Схема потока и превращения энергии в биосфере. Поток энергии в биосфере. Энтропийность биосферных процессов. Закономерности эволюции биосферы: принцип Реди; закон глобального замыкания биогеохимического круговорота; закон увеличения доли биологического ко

Существует 2 подхода в оценке путей эволюции биосферы. 1) утверждает, что эволюции биосферы нет. 2) эволюция биосферы отождествляется с эволюцией одного компонента – органического мира.

Новые данные свидетельствуют о том, что в ходе эволюции органических форм происходили и определенные изменения в биосфере (например, расширялась зона распространения жизни, усложнялся биотический круговорот, изменялись биогеохимические функции). В то же время эти изменения не следовали автоматически за любыми изменениями в органическом мире.

Своеобразие эволюции биосферы заключается в том, что она проходит в пределах уже сложившегося уровня организации живого. К изменениям сложно применить критерии прогрессивного/регрессивного развития.

Эволюция биосферы – это и изменения ее общих параметров(общая биомасса, энергетические функции),и эволюция организмов/экосистем.

Источником развития биосферы выступают отношения между живым и костным веществом в поверхностной оболочке Земли. Разрешение этого противоречия в ходе обменных процессов между организмами и ОС обеспечивает процесс развития биосферы как целостной материальной системы. Органический мир в целом, а не отдельные группы животных/растений детерминируют основные параметры биосферы.

Основные тенденции в эволюции биосферы

Рост биомассы и ее организованности . Наблюдалось устойчивое увеличение биомассы живого вещества. По мере развития биосферы отмечалась тенденция к росту ее организованности. Она проявлялась в частности в увеличении способности биосферы к саморегуляции, увеличении степени независимости от других оболочек. В процессе коренных перестроек биосферы сохранялись прежде всего те группы сообщества, которые были устойчивы к воздействию астрономических/геологических факторов.

Роль живого вещества в становлении и стабилизации поверхностных оболочек Земли . Решающая роль живого вещества в эволюции биосферы и земных оболочек особенно ярко проявилась в: 1) формировании газового состава атмосферы 2) превращении восстановительной обстановки в окислительную 3) преобразовании химической и минеральной структуры биосферы 4) детерминации химической активности природных вод. 5) изменении общего термодинамического баланса биосферы.



«живое вещество охватывает и перестраивает все химические процессы биосферы, действительная энергия его, по сравнению с энергией костного вещества, огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени».

Накопление энергии в биосфере. «с космической точки зрения жизнь есть постоянное задержание и накопление химической и лучистой энергии, замедляющей превращение полезной энергии в теплоту и препятствующей рассеиванию последней в мировом пространстве».

Находящаяся в биосфере энергия является результатом ее эволюции. Основными способами увеличения энергии являются 1) фотосинтез и выделение кислорода. 2) захват растениями новых областей Земли, превращение их в области аккумуляции солнечной энергии. 3) аккумуляция солнечной энергии в горючих ископаемых и биогенных минералах

Возникновение новой формы миграции химических элементов. По мере эволюции групп животных со сложным поведением развивалась биогенная миграция атомов. Новая форма биогенной миграции не связана с прохождением химических элементов через тело организма.

Биосферная адаптация. Важнейшими являются: 1) возникновение озонового экрана. 2) способность растений улавливать солнечную энергию, преобразовывать в химическую. 3) разнородность трофических уровней, многообразие видов, участвующих в пищевых цепях. 4) сезонная ритмика способствует выработке адаптаций широкого значения, позволяющей организмам выживать в условиях колебания факторов среды. 5) на популяционном и организменном уровне организации живого воздействие факторов проявляется в изменении динамики численности и воспроизводства популяции. 6) существуют закрепленные генетически механизмы обеспечения жизнеспособности организма, функционирования физиологических и биохимических процессов в пределах определенного диапазона геохимических условий. 7) внутри популяции существует гетерогенность по чувствительности организма к определенным условиям, особенно ярко при воздействии на организм веществ в экстремальных дозах, когда в организме возникают различные заболевания и отклонения. 8) чем значительнее колебание геохимических факторов, тем выше темпы эволюционных преобразований. 9) элементы не действуют изолированно, большое значение имеет соотношение между ними. При изменении концентрации какого-либо элемента в организме происходит не только усиление/ослабление отдельных процессов, но и дисфункция всех процессов обмена веществ. Необходимо учитывать, что отдельные организмы не только приспособлены к внешней среде, но и приспосабливают среду к своим биологическим потребностям.

Биосфера - открытая система. Ее существование невозможно без поступления энергии извне. Основная доля приходится на энергию Солнца. В отличие от количества солнечной энергии, количество атомов вещества на Земле ограничено. Круговорот веществ обеспечивает неисчерпаемость отдельных атомов химических элементов. При отсутствии круговорота, например, за короткое время был бы исчерпан основной «строительный материал» живого - углерод.

Биосфера Земли характеризуется определенным образом сложившимся круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном потоке солнечной энергии.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы. Геологический круговорот веществ осуществляется без участия живых организмов.

Биологический круговорот - круговорот веществ, движущей силой которого является деятельность живых организмов. С появлением человека возник антропогенный круговорот, или обмен веществ.

Антропогенный круговорот (обмен) - круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую , связанную с функционированием человека как живого организма, и техническую , связанную с хозяйственной деятельностью людей (техногенный круговорот (обмен).

В отличие от геологического и биологического круговоротов веществ, антропогенный круговорот веществ в большинстве случаев является незамкнутым. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды. Именно они и являются основной причиной всех экологических проблем человечества.

Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов (рис. 27-30).

Рис. 27.



Рис. 29.


Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км 3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2 /з его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания С0 2 в атмосфере и развитию парникового эффекта.

Скорость круговорота С0 2 , то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0 2) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши - почти 3 / 4 , остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде МН 4 + или N03". Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, что вызывает заболевания человека.

Потоки энергии и вещества в биосфере неразрывно связаны с потоками информации. Ранее мы рассмотрели, что способность восприни­мать, накапливать и использовать информацию является одной из главных особенностей живого вещества. Эта способность не­разрывно связана с построением упорядоченных структур (организма, популяции, биоценоза и т.д.).

Благодаря биологической эволюции живые организмы выра­ботали множество механизмов адаптации ,то есть приспособле­ния к условиям жизни. Более того, само строение и физиология организмов есть результат адаптации. Первое, чему должны были научиться живые организмы, - это различать в окружаю­щей среде молекулы и частицы, пригодные в пищу, от инертных или опасных. Так возникли хеморецепторы,сохраненные у рас­тений и высших животных в виде вкуса и обоняния. Это уже ин­формационная связь организма с внешним миром. Как только образовалась живая клетка и в ней специализированные органеллы, потребовался обмен информацией между ними. Перво­начально обмен веществ и энергией внутри клетки являлся од­новременно и обменом информационными сигналами. Однако нуклеиновые кислоты (ДНК и информационная РНК) стали вы­полнять преимущественно информационные функции. По мере усложнения органических структур появились гормоны и гормоноподобные вещества с их чисто информационно-командными функциями. Специализированные железы внутренней секреции, генерирующие эти вещества, образовали эндокринную систему управления организмом.

С увеличением размеров животные уже не могли обходиться только химическими информационными связями. Слишком мед­ленными оказываются процессы передачи информации. Так поя­вилась нервная система, использующая быстрые электрические сигналы, и новые органы чувств (рецепторы)- зрение и слух, да­ющие информацию об окружающей среде на больших расстояни­ях и практически мгновенно. Увеличение количества и качест­венные изменения поступающей извне информации, а также не­обходимость согласованных движений всех органов тела привели к образованию центральной нервной системы. При этом железы внутренней секреции, занимающие наивысшее положение в эн­докринной системе - гипоталамус и гипофиз,расположились в головном мозге (скорее мозг возник вокруг них) и обеспечивают согласование действий нервной и эндокринной систем.

С развитием нервной системы у животных появилась спо­собность обмена зрительными и звуковыми сигналами, а следом за тем и способность к обучению потомства. Эта последняя спо­собность неразрывно связана с появлением головного мозга и свободной, незаполненной изначально памяти. Накопленная живым организмом информация разделилась на врождённую, переданную химическим путём от предков, и приоб­ретённую, полученную сигнальным путём за счёт обучения и собственного опыта.

Важнейшим свойством живого вещества, принципиально от­личающим его от косной материи, является передача наследст­венной информации из поколения в поколение. Эта связь осу­ществляется с помощью генетического кода, носителями кото­рого служат нуклеиновые кислоты.

Принципиальным адаптационным шагом в эволюции ока­зался переход от вегетативного к половому размножению. Дело в том, что под воздействием внешних факторов, прежде всего ра­диационного фона, химических веществ и вирусной инфекции, в спиралях дезоксирибонуклеиновой кислоты возникают нарушения или мутации,то есть наследственная информация может портиться. При вегетативном, бесполом размножении у популя­ции нет иного способа исправить эти нарушения кроме гибели носителей вредных мутаций. Половое размножение даёт воз­можность корректировать ошибки, возникшие в генетическом коде, так как вероятность одинаковых нарушений у обоих роди­телей мала. Именно поэтому опасны браки между кровными родственниками, когда вероятность одинаковых хромосомных дефектов у обоих родителей резко возрастает, и, напротив, по­томство отдалённых генетических линий бывает особенно силь­ным и жизнеспособным.

При вегетативном размножении говорить об индивидуаль­ном биологическом возрасте особи в принципе бессмысленно. Понятие возраста особи возникает вместе с половым размноже­нием, причём механизм запрограммированного старения поя­вился, скорее всего, на поздних этапах эволюции. Такие древ­ние виды, как крокодилы, черепахи или акулы, ещё этого меха­низма, по-видимому, не имеют. Они потенциально бессмертны и погибают от болезней, врагов или в силу изменения условий обитания. Запрограммированное старение и смерть от старо­сти - пример адаптационного признака, полезного для вида в целом, но не для отдельного организма. Они обеспечивают сме­ну поколений и отбор генофонда в популяции, позволяющие ей эффективно адаптироваться к постепенным изменениям среды обитания.

Динамика биосферы

Биосфере, как и любой другой природной системе, свойственна динамика . Этот термин означает систему закономерных изменений состоя­ния среды обитания живых организмов и соответственно состояния самих этих организмов, а также непрерывных нарушений последнего.

Как известно, к границам биосферы подходят различные виды космических, и прежде всего солнечных, потоков вещества и энер­гии (видимый свет, тепловые инфракрасные лучи, ультрафиолетовое и радиоактивное излучение, а также коротковолновое и рентгено­вское излучение); большая их часть задерживается в высоких слоях атмосферы и на границе ее с космическим пространством. При этом первопричиной динамики биосферы является поток поступающей на Землю солнечной энергии. Проходя через атмосферу и попутно взаи­модействуя с ней, он определяет совокупность климатических про­цессов. Конкретные состояния последних в каждом месте в каждый момент времени называют погодой .

Именно постоянные изменения погодных условий служат глав­ной причиной разнообразных колебательных изменений в природе биосферы. Как известно, атмосфера нагревается неравномерно, что в свою очередь заставляет воздух постоянно перемешиваться; при этом неоднородность земной поверхности весьма осложняет указанное пе­ремешивание. При этом необходимо учитывать и воздействие мате­риков и океанов. Так, материки усиливают температурные контрас­ты: зимой вблизи полюсов они сильнее охлаждаются, а летом в тро­пиках сильнее прогреваются. Напротив, океаны эти контрасты ослабляют.

Воздушные потоки в жизни биосферы играют большую роль. Благодаря им доставляются сотни миллиардов тонн воды из океанов, которые далее увлажняют сушу, они же приносят почти весь необхо­димый для жизненных процессов йод. Однако в результате воздей­ствия многих факторов траектории воздушных потоков периодически отклоняются от средних положений. Из-за этого в различных местах земли наступают заморозки или оттепели, засухи или дожди, сти­хийные бедствия или, напротив, периоды устойчивости природных факторов.

Обязателен учет роли геологических факторов, которые прелом­ляют и конкретизируют влияние изменений погодных процессов на природу. В частности, действие заморозков ослабевает в положи­тельных и усиливается в отрицательных формах рельефа, засуха силь­нее проявляется не только на южных, но и на глинистых склонах. Наконец, при прогнозировании последствий изменения погоды нельзя не учитывать роль почвенного покрова и, прежде всего его замедлен­ную реакцию на изменения погодных условий. Она в свою очередь тормозит реакцию растительности на изменения последних, что оп­ределенным образом стабилизирует состояние всего живого покрова. Указанное явление торможения проявляется, в частности, в том, что атмосферная засуха может быть весьма сильной, но в почве, тем не менее, имеются запасы влаги, которые остались в ней от преды­дущих лет. Поэтому дефицит влаги проявляется не так остро.

Вышеизложенное следует увязывать с тем, что скорость реакции различных видов живых существ на изменение погоды (при наличии взаимосвязи между ними) обусловливает непрямолинейность влия­ния погодных условий на экологические системы. Поэтому биоти­ческие факторы служат одновременно источником как автоколеба­ний природных сообществ, так и их стабилизации.

Огромную роль в динамике биосферы играют геокосмические рит­мы. Очевидно, что вся­кое количественное или качественное изменение в притоке космичес­кой энергии сказывается на состоянии исключительно чувствительных передающих систем (атмосферы, гидросферы и почвы), а затем и на существующей за счет энергии Космоса биосфере. В частности, была установлена связь колебаний численности видов живых существ, урожаев, динамики заболеваемости населения с солнечными процес­сами. Однако следует иметь в виду, что космические ритмы очень разнообразны. Так, наряду с хорошо изученными 11,5-летними солнечны­ми циклами существует множество других - от одномесячных лунных до длящихся миллиарды лет галактических ритмов. Налагаясь друг на друга, эти ритмы оказывают сложные интегральные воздействия на жи­вые организмы, характер которых до сих пор до конца не ясен.

Ныне, на динамику биосферы огромное влияние оказывает челове­ческая деятельность. При этом она в отличие от естественных экологических факторов, обусловливает не колебательные, а преимущественно поступательные изменения приро­ды. Так, развитие водного транспорта влечет за собой создание кана­лов, соединяющих различные речные системы, и, соответственно, раз­витие обменов элементами флоры и фауны между водными бассейна­ми. Что касается колебательных явлений в природе, связанных с человеческой деятельностью, то они весьма редки. Это либо ритми­ческие, часто многолетние процессы смены культурных растений в се­вообороте, либо аномальные явления.

Устойчивость биосферы

Что же позволяет жизни во всех ее формах и проявлениях быть достаточно устойчивой во времени и пространстве? В попытке ответить на этот весьма сложный вопрос следует учесть, что жизнь в значительно большей степени есть явление космическое, нежели земное. Результаты исследований последних лет показывают, что строение, эволюция биосферы, как и устойчивость последней, предопределены начальными условиями, которые существовали до современного состояния Вселенной, и самим происхождением Кос­моса.

Характеризуясь, огромной энер­гией, космическое излучение способно за относительно короткий срок разложить на ионы и электроны весь воздух атмосферы, а следова­тельно, уничтожить жизнь на планете. Однако этого, к счастью, не происходит. Дело в том, что Земля представляет собой своеобразный магнит, его силовые линии окружают земной шар и образуют вокруг него магнитосферу , которая защищает живые организмы от солнеч­ного ветра. Однако некоторые частицы солнечной плазмы с высокой энергией могут проникать сквозь радиационные пояса и даже дости­гать биосферы.

Итак, магнитное поле есть важнейший защитник жизни на Зем­ле, без которого она не смогла бы зародиться в прошлом, не смогла бы сохраниться в настоящем. Но наряду с этим есть и другие факто­ры стабильности, порожденные самим живым веществом биосферы.

Важнейшим фактором возникновения и развития биосферы стало создание автотрофными организмами кис­лородной среды на Земли. С появлением такого химического активного элемента, как кислород в свободном, т.е. молекулярном состоянии, существенно изменились процессы минералообразования в поверх­ностных слоях геологической оболочки планеты, а следовательно, резко изменились и все химические факторы существования живого вещества. С другой стороны, наполнение атмосферы кислородом способствовало появлению в ней озона и формированию озонового слоя .

Образование озона в стратосфере связано с реакцией фотодиссоциа­ции поступающего туда молекулярного кислорода под воздействием уль­трафиолетового излучения Солнца. Основное количество озона сосредоточено в стратосфере на вы­сотах 15-25 км (верхняя граница его распространения - до 45 км), где он образует озоновый слой или озоносферу. Основная масса озо­на образуется в экваториальной зоне и распространяется затем атмос­ферными движениями к полюсам непосредственно. У поверхности Земли озон появляется только во время грозовых разрядов.

Расчеты показали, что если все содержащиеся в атмосфере моле­кулы озона равномерно распределить над поверхностью Земли, то толщина образовавшейся оболочки составит лишь около 3 мм. Несмотря на крайне низкое количественное содержание, этот газ имел и продолжает иметь неоценимое эколого-биологическое значе­ние, так как слой озона практически полностью поглощает поток ко­ротковолновых УФ-лучей Солнца с длиной волны 200-280 нм и около 90% ультрафиолетового излучения с длиной волны 280-320 нм. Та­ким образом, озоновый слой является охранным щитом от жесткого, короче 280 нм, УФ-излучения, крайне опасного для всего живого на планете. При этом наблюдения и расчеты ученых выявили, что если общее содержание озона сократится всего лишь на 10-20%, то на каж­дый процент такого сокращения придется приблизительно 2%-ное уве­личение потока в вышеуказанной полосе УФ-излучения.

Стабильность биосферы, помимо вышесказанного, в значительной степени основывается на высоком видовом разнообразии живых организмов , отдельные груп­пы которых выполняют различные функции в поддержании общего потока вещества и распределения энергии, на теснейшем переплете­нии и взаимосвязи биогенных и абиогенных процессов, на согласо­ванности циклов отдельных элементов и уравновешивании емкости отдельных экологических ниш. В биосфере действуют сложные системы об­ратных связей и зависимостей.

Итак, биосфера теснейшим образом связана с Космосом. Потоки космической энергии создают на Земле условия, обеспечивающие жизнь. При этом находящиеся за пределами биосферы магнитное поле Земли, возникшее задолго до появления жизни, а также озоновый экран, яв­ляющийся порождением живого вещества планеты, защищают жизнь на ней от губительного космического излучения и интенсивной солнечной радиации. С другой стороны, находясь, образно говоря, между моло­том и наковальней (снаружи - враждебный Космос, внутри Земли - огромное раскаленное ядро), жизнь активно ищет пути поддержания своего существования и развития. Отсюда следует вывод, что стабиль­ное состояние биосферы обусловлено в первую очередь деятельностью самого живого вещества, обеспечивающей определенную скорость фик­сации солнечной энергии и биогенной миграции атомов. Жизнь на пла­нете Земля сама стабилизирует и, согласно В.И. Вернадскому, «как бы само создает себе область жизни». Это закладывает основу для длитель­ного ее развития.

Здесь уместно привести принцип Ле Шателье-Брауна :при внеш­нем воздействии, выводящем экологическую систему из состояния ус­тойчивого равновесия, равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется.

Однако стабильность биосферы имеет определенные пределы и нарушение ее регуляторных возможностей чревато серьезными по­следствиями. На это, в частности, указывает правило одного процен­та :изменение энергетики природной системы в среднем на 1% выводит последнюю из состояния гомеостаза (равновесия). Данное правило подтверждается исследованиями в области глобальной климатологии и других геофизических, а также биофизических процессов. Так, все крупные природные явления на поверхности Земли (извержения вул­канов, мощные циклоны, процесс глобального фотосинтеза и т.п.), как правило, имеют суммарную энергию, не превышающую 1% энер­гии солнечного излучения попадающего на поверхность Земли. Пе­реход энергетики процесса за это значение обычно приводит к рез­ким аномалиям - климатическим отклонениям, переменам в харак­тере растительности, крупным лесным и степным пожарам. Все это следует учитывать при планировании отдельных видов хо­зяйственной деятельности глобального масштаба.

Ноосфера

Венцом учения В.И. Вернадского о биосфере стало учение о ноосфере. Ноосфера («мыслящая оболочка», сфера разума) - выс­шая стадия развития биосферы. Это «сфера взаимодействия природы и общества, в пределах которой разумная человече­ская деятельность становится главным, определяющим фак­тором развития».

Почему возникло понятие «ноосфера»? Оно появилось в связи с оценкой роли человека в эволюции биосферы. Непре­ходящая ценность учения В. И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого ве­щества в планетарных процессах, в создании и развитии био­сферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человекакак мощную геологическую силу . Эта сила способна оказывать влияние на ход биогеохи­мических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве (пока «ближний» Космос). Вся эта среда весьма существенно изменяется чело­веком благодаря его труду. Он способен перестроить ее со­гласно своим представлениям и потребностям, изменить фак­тически ту биосферу, которая складывалась в течение всей геологической истории Земли.

В. И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свобод­ного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окру­жающей человека среде». Иными словами, ноосфера - окружающая человека среда, в которой природные процессы обмена веществ и энергии кон­тролируются обществом.

Человек, по мнению В. И. Вернадского, является частью биосферы, ее «определенной функцией». Подчеркивая тесную связь человека и природы, он допускал, что предпосылки воз­никновения человеческого разума имели место еще во време­на животных, предшественников Homo sapiens, и проявление его началось миллионы лет назад, в конце третичного перио­да. Но как новая геологическая сила смог проявить себя толь­ко человек.

Воздействие человеческого общества как единого целого на природу по своему характеру резко отличается от воздей­ствий других форм живого вещества. В. И. Вернадский пи­сал: «Раньше организмы влияли на историю тех атомов, ко­торые были нужны им для роста, размножения, питания, ды­хания. Человек расширил этот круг, влияя на элементы, нуж­ные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов».

Эти гениальные мысли В. И. Вернадского позволили ря­ду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возник­нет ноосфера, но это будет происходить благодаря «новым фор­мам действия живого вещества на обмен атомов живого ве­щества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, ме­няющего коренным образом и ее облик, и ее строение, - ноо­сферы».

Заключение

Анализируя представления В. И. Вернадского о ноосфере, надо отметить, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноо­сферу, всеми своими корнями связано с биосферой. Ноосфе­ра - естественное и необходимое следствие человеческих уси­лий. Это преобразованная людьми биосфера соответственно по­знанным и практически освоенным законам ее строения и раз­вития. Рассматривая такое развитие биосферы в ноосферу с по­зиций системного подхода, можно заключить, что ноосфера - это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производ­ство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек». Ста­новление ноосферы, по В. И. Вернадскому, - процесс длитель­ный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодей­ствии человека и природы, трудно увязать с наступлением эпо­хи разума. Тем не менее прогресс человеческого разума и науч­ной мысли ноосферы налицо: они вышли уже за пределы био­сферы Земли, в Космос и глубины литосферы. По мнению многих ученых - ноосфера в будущем станет особой областью Солнечной системы. «Био­сфера перейдет так или иначе, рано или поздно в ноосферу... На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, ина­че у него не будет будущего», - утверждал В. И. Вернадский.

Литература

Бродский А.К. Краткий курс общей экологии: Учебное пособие.- СПб.: ДЕАН. 2000. 224 с.

Воронцов А.И. и др. Охрана природы: Учебники и учебные пособия для техникумов.- М.: Агропромиздат, 1989.- 303 с.

Гальперин М.В. Экологические основы природопользования: Учебник.- М.: ФОРУМ: ИНФРА-М, 2002. - 256 с.

Коробкин В. И., Передельский Л.В. Экология. изд. 6-е, доп. и переработ.- Ростов н/Д: изд-во «Феникс», 2000. - 576 с.

Радкевич В.А. Экология: Учебник. - Минск: Высшая школа, 1997.

Реймерс Н.Ф. Природопользование. - М.: Мысль, 1990.

Реймерс Н.Ф. Экология (теория, законы, правила, принципы и гипотезы). - М.: «Россия молодая», 1994.

Экология: Учебное пособие / Под ред. проф. В.В. Денисова. Серия «Учебный курс». - Ростов н/Д: Издательский центр «МарТ», 2002. - 640 с.

Текущая страница: 17 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

Шрифт:

100% +

3.4. Движение вещества и энергии в биосфере
3.4.1. Круговорот веществ в биосфере

Во все геологические периоды геосфера как внешняя оболочка Земли, в которой взаимодействуют земная кора, атмосфера (до озонового слоя), гидро– и биосфера и где сосредоточены жизнь и хозяйственная деятельность человека, развивалась как единое целое. Единство, саморегулирование и развитие обеспечивались непрерывным движением вещества и энергии в биосфере. Первоисточником энергии для экосистем служит Солнце. Поток солнечной энергии на Земле и ее трансформации показаны на рис. 3.1.

Поток энергии, посылаемый Солнцем к планете Земля, превышает 20 млн ЭДж/год. Из-за шарообразности Земли к границе всей атмосферы подходит только четверть этого потока. Из нее около 70 % отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн ЭДж/год.


Рис. 3.1. Поток солнечной энергии на Земле и ее трансформации (по Т.А. Акимовой, В.В. Хаскину, 1994):

П р и м е ч а н и е. Энергия выражена в эксаджоулях (ЭДж/год). 1 ЭДж = 10 18 Дж; горизонтальное сечение потока энергии – логарифмическое. На каждом из этапов трансформации большая часть энергии теряется.

Биосфера играет важную роль в распределении энергетических потоков на Земле. В год до Земли доходит около 1024 Дж солнечной энергии; 42 % из нее отражается обратно в космос, а остальная часть поглощается. Другим источником энергии является теплота земных недр: 20 % энергии возвращается в мировое пространство в виде теплоты, 10 % расходуется на испарение воды с поверхности Мирового океана. Зеленые растения в процессе фотосинтеза преобразуют около 10 22 Дж энергии в год, поглощают 1,7·10 8 т углекислого газа, выделяют около 11,5·10 7 т кислорода и испаряют 1,6·10 13 т воды. Исчезновение растений привело бы к катастрофическому накоплению углекислого газа в атмосфере, и через сотню лет жизнь на Земле в ее нынешних проявлениях погибла бы. Наряду с фотосинтезом в биосфере происходят почти такие же по масштабам процессы окисления органических веществ при дыхании и разложении.

В организмах содержатся все известные сегодня химические элементы. Для синтеза живого вещества необходимо примерно 40 элементов. Наибольшую роль выполняют основные биогенные элементы.

Биогенные элементы – это химические элементы, постоянно входящие в состав организмов. Они выполняют жизненно необходимые биологические функции, т. е. являются основой жизни. Прежде всего, это кислород (составляющий 70 % массы организмов), углерод (18 %), водород (10 %).

Другие элементы требуются в меньших количествах, но и они также необходимы. Это кальций, железо, калий, магний, натрий, кремний и др. Все элементы попеременно переходят из живой материи в материю косную (неживую), участвуя в более или менее сложных биогеохимических циклах.

Успехи аналитической химии и спектрального анализа расширили перечень биогенных элементов: ученые открывают все новые элементы, входящие в состав организмов в малых количествах (микроэлементы ), и открывают биологическую роль многих из них. Вернадский считал, что все химические элементы, постоянно присутствующие в клетках и тканях организмов в естественных условиях, вероятно, играют определенную физиологическую роль. Многие элементы имеют большое значение только для определенных групп живых существ (например, бор необходим для растений, ванадий – для асцидий и т. п.).

Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений – от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Все элементы попеременно переходят из живой материи в косную (неживую), участвуя в сложных биогеохимических циклах, которые можно разделить на две основные группы:

Круговорот газов и воды, в котором главным резервуаром элементов служит атмосфера (круговорот углерода, азота, кислорода);

Круговорот осадочный, элементы которого в твердом состоянии находятся в составе осадочных пород (круговорот фосфора, железа и серы).

Организмы участвуют в миграции химических элементов как прямо (выделение кислорода в атмосферу, окисление и восстановление различных веществ в почвах и гидросфере), так и косвенно (восстановление сульфатов, окисление соединений железа, марганца и других элементов). Биогенная миграция атомов вызвана тремя основными процессами: обменом веществ, ростом и размножением организмов.

Огромную роль в биогеохимической активности играет человек, извлекая ежегодно в ходе добычи полезных ископаемых миллиарды тонн горной породы. Влияние человека на глобальные геохимические процессы с каждым годом только растет.

Солнечная энергия на Земле вызывает два круговорота веществ:

Биосферный – безостановочный планетарный процесс закономерного циклического, но неравномерного перераспределения веществ, информации и энергии, многократно входящих в экосистемы биосферы. Это так называемый большой круг биотического обмена ;

Биогеоценотипический – многократное циклическое, но неравномерное во времени и незамкнутое обращение части веществ, энергии и информации, входящих в биосферный круговорот, в пределах биогеоценоза. Это так называемый малый круг биотического обмена .

Оба круговорота взаимосвязаны и представляют собой единый процесс.

На рис. 3.2. представлена принципиальная схема биотического круговорота.


Рис. 3.2. Принципиальная схема биологического (биотического) круговорота (по К.Ф. Реймерсу, 1990)


Основу биосферы и ее функций составляет, прежде всего, круговорот таких биологически важных веществ, как углерод, кислород, фосфор, азот и вода. Циклы элементов существенно отличаются от простого физического преобразования энергии, которая, в конце концов, деградирует в виде теплоты и никогда потом не используется снова.

Круговорот углерода является наиболее значимым для сохранения свойств биосферы. Единственным источником углерода, используемого автотрофными растениями для синтеза органического вещества, служит углекислый газ (диоксид углерода) – CO 2 , входящий в состав атмосферы или находящийся в растворенном состоянии в воде. Углерод горных пород (преимущественно карбонаты) автотрофами практически не используется.

Круговорот углерода начинается с фиксации атмосферного углекислого газа в процессе фотосинтеза (рис. 3.3).


Рис. 3.3. Круговорот углерода в биосфере


В результате фотосинтеза из диоксида углерода и воды образуются углеводы и высвобождается кислород, поступающий в атмосферу. Часть образовавшихся углеводов используется самим фотосинтезирующим организмом (зеленым растением или некоторыми микроорганизмами и простейшими) для получения энергии, идущей на рост и развитие, а часть – животными при поедании этих организмов. При этом диоксид углерода уходит в окружающую среду через корни, листья и некоторые другие органы растений, а также выделяется животными в процессе дыхания.

Мертвые животные и растения постепенно разлагаются микроорганизмами почвы, углерод их тканей окисляется до CO 2 и снова возвращается в атмосферу. Аналогичный процесс происходит не только на суше, но и в океане. Благодаря длительной фотосинтезирующей деятельности в атмосфере накопилось достаточное количество свободного кислорода для процветания белковой жизни. Более того, в настоящее время для процесса фотосинтеза лимитирующим фактором является не только низкое содержание в атмосфере СO 2 , но и высокое – кислорода. Фотосинтезирующие зеленые растения и карбонатная система моря весьма эффективно удаляют из атмосферы избыток СO 2 , который может привести к перегреву планеты и угнетению жизни.

Однако необыкновенно возросшее потребление ископаемого топлива, газовые выбросы промышленности, а также снижение поглотительной способности зеленых растений в связи со значительным сокращением лесов, прежде всего влажных джунглей Амазонки и таежных лесов Сибири, влияние ряда химических загрязнителей на сам процесс фотосинтеза начинают заметно отражаться и на атмосферном фонде круговорота углерода.

О масштабах круговорота углерода можно судить по следующим цифрам. Запасы углерода в атмосфере оцениваются в 700 млрд т, в гидросфере – в 50 000 млрд т. Если принять, что общий годовой фотосинтез, согласно существующим подсчетам, составляет соответственно 30 и 150 млрд т, то продолжительность круговорота углерода равна трем или четырем столетиям, а по некоторым данным, – 1000 лет. Действительно, содержание СO 2 в атмосфере не уменьшается, так как его запасы постоянно пополняются за счет дыхания, брожения и сгорания. Наоборот, существует реальная опасность того, что в результате развития промышленного производства и нарушения равновесного состояния биосферы содержание СO 2 в атмосфере может значительно вырасти, что приведет к целому ряду отрицательных эффектов.

Круговорот воды в биосфере (рис. 3.4) предполагает, что суммарное испарение уравновешивается выпадением осадков. В средних широтах растения способны задерживать до 25 % воды, выпадающей в виде осадков. Остальная вода впитывается в почву или стекает по поверхности в водоемы. Благодаря испарению часть воды снова возвращается в атмосферу.

В Германии был проведен количественный учет дождевой воды на всей территории страны. Выяснилось, что из годовой нормы осадков в 771 мм только 367 мм, или меньше 50 %, достигает моря в виде ливневых стоков; остальная вода, т.e. 404 мм, испаряясь, возвращается в атмосферу. Растения поглощают и транспирируют (испаряют) в атмосферу 38 % осадков. Показано, что задерживается и идет на создание живого вещества всего 1 % атмосферной влаги.



Рис. 3.4. Круговорот воды в биосфере


В экваториальных районах испарение играет еще более существенную роль. Например, известно, что тропические леса бассейна реки Конго испаряют 2/3 выпадающих осадков. Ежегодно с поверхности Мирового океана в атмосферу испаряется около 880 мм, с суши – 140 мм воды и столько же выпадает на Землю в виде осадков. Живые организмы играют активную роль в круговороте воды на Земле. Подсчитано, что вся вода планеты проходит через живую оболочку Земли за 2 млн лет. Из океана испаряется больше воды, чем попадает в него с осадками, на суше – наоборот. Лишние осадки, выпадающие на суше, попадают в ледяные шапки и ледники и сохраняются там, пополняя грунтовые воды, откуда растения забирают их с помощью корневой системы и используют на рост и развитие. Грунтовые воды питают реки и озера, из которых снова возвращаются в океан со стоком.

Удаление некоторого количества воды в виде паров и водорода в космос компенсируется в основном за счет ювенильной воды, т.e. поднимающейся на поверхность из глубоких магматических очагов в результате вулканической деятельности и землетрясений.

Круговорот азота (рис. 3.5) также охватывает все области биосферы. Его запасы в атмосфере практически неисчерпаемы, однако высшие растения могут усваивать азот лишь после того, как он образует легкорастворимые соли с водородом или кислородом. В этом процессе основополагающую роль играют азотфиксирующие бактерии. Растения, поглотившие азот, в дальнейшем поедаются животными. С энергетической точки зрения круговорот азота можно представить как ряд этапов, которые требуют энергии извне либо получают ее за счет энергонасыщенных соединений. В процессе круговорота азот протоплазмы переводится из органической в неорганическую форму в результате деятельности нескольких видов бактерий, каждый из которых выполняет одну индивидуальную функцию.


Рис. 3.5. Круговорот азота в биосфере


Атмосферный воздух является кладовой азота, так как на 78,09 % он состоит из него, но, как уже указывалось ранее, чтобы высшие растения смогли атмосферный азот усвоить, он должен соединиться с кислородом или водородом. С помощью азотфиксирующих бактерий азот атмосферы переходит в легкоусвояемые растениями формы. Растения, использовавшие азотсодержащие соли на pocт и развитие, поедаются животными. Продукты жизнедеятельности последних также с помощью бактерий разлагаются до аммиака, а затем другими микроорганизмами связываются до нитратов и нитритов и т. д. Таким образом, азот постоянно поступает в атмосферу благодаря жизнедеятельности денитрифицирующих бактерий, а также образуется при атмосферных электроразрядах (молниях) и снова включается в круговорот за счет деятельности азотфиксирующих бактерий и зеленых водорослей.

Для круговорота азота, как и для любого другого процесса, необходима энергия. Хемосинтезирующие бактерии, превращающие аммиак через ряд процессов в нитриты, получают энергию за счет разложения; денитрифицирующие и азотфиксирующие бактерии – за счет других источников.

Азот могут фиксировать многие бактерии, такие как свободноживущие Azotobacter и Clostridium , симбиотические клубеньковые бактерии бобовых растений, некоторые пурпурные и различные почвенные бактерии. Кроме того, показано, что водоросли и бактерии, живущие на листьях, и эпифиты тропических лесов также могут фиксировать атмосферный азот, часть которого опосредованно используется и деревьями, однако, не обнаружено ни одного высшего растения, которое могло бы самостоятельно получать азот из атмосферы и использовать его в процессе жизнедеятельности. Известно, что в биосфере в целом за год в среднем фиксируется из воздуха 140–700 мг/м 3 азота. В основном это биологическая фиксация, и лишь крайне незначительное количество фиксируется за счет фотохимических и электрических процессов.

Круговорот фосфора (рис. 3.6), в отличие от круговорота азота, является сравнительно простым процессом, хотя по своей значимости для биосферы ему не уступает. Основные запасы фосфора содержатся в различных горных породах, которые постепенно за счет вымывания и выветривания отдают фосфаты наземным экосистемам. Фосфаты потребляются, прежде всего, растениями разного уровня организации и используются ими для синтеза органических веществ, таких как аминокислоты, ферменты и др. При разложении растительных остатков и трупов животных бактериями фосфаты возвращаются в почву и затем снова используются растительными организмами и микробами. Помимо этого часть фосфатов выносится с паводковыми водами в море, что обеспечивает развитие фитопланктона и существование зависящих от него организмов. Часть фосфора, содержащегося в морской воде и морских организмах, может вновь возвращаться на сушу при вылове рыб, моллюсков, ракообразных, водорослей и т. д.



Рис. 3.6. Круговорот фосфора в природе


Фосфор – один из наиболее важных элементов живого вещества. Он принимает участие в основных биохимических реакциях, обеспечивающих жизнедеятельность организма и его целостность. В связи с высокой активностью в окружающей среде свободный фосфор является относительно редким элементом. Ежегодно человеком добывается 2–2,5 млн т фосфорсодержащих пород, используемых в качестве минерального сырья для получения ряда продуктов, при этом большая часть фосфора исключается из круговорота. Запас же таких пород ограничен, и уже в настоящее время ощущается их дефицит.

Круговорот биогенных элементов в значительной мере обеспечивает плодородие почв. На суше главным источником биогенных катионов служит почва, в которую они поступают в процессе разрушения материнских пород, а также приносятся атмосферными осадками. Катионы адсорбируются корнями, а затем распределяются по разным вегетативным органам растений. В наибольшем количестве биогенные катионы накапливаются в листьях. Травоядные животные поедают растительную биомассу, травоядных животных поедают хищники или они умирают, минерализация экскрементов и трупов возвращает биогенные элементы снова в почву. В умеренных широтах бо́льшая часть минеральных питательных веществ сохраняется в мощном слое гумуса, в котором создаются резервы биогенов и основных питательных веществ. Поэтому выкашивание травы, сбор опада в лесу, выпас скота, корчевка пней, выжигание растительности, снятие дерна приводит к исчезновению такого ресурса питательных веществ, как гумус. В результате этого нарушается круговорот биогенных элементов, происходит трансформация лесной экосистемы в пустошь или луг со скудной растительностью.

3.4.2. Основные закономерности движения энергии в биосфере

Все преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм самостоятельно не продуцирует энергию, она может быть получена только извне. В современной биосфере основным источником энергии для биогенного круговорота является Солнце. По приблизительным расчетам, если энергию солнечного излучения принять за 100 %, то только 15 % ее достигает поверхности Земли и только 1 % связывается в виде органического вещества растениями, основными продуцентами первичной продукции. Около половины этой энергии расходуется на процессы жизнедеятельности (потери на дыхание). Оставшиеся 50 % идут на рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5 % солнечной энергии, падающей на Землю. Накопленная в процессе фотосинтеза биомасса растений (первичная продукция) – это резерв, часть которого используется в качестве пищи организмами – гетеротрофами (консументами 1-го порядка). Остальная часть – это реальное количество массы растительности в экосистеме.

По словам Одума, «экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы».

Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в биосистемах в разного рода круговоротах вещества. Ранее были рассмотрены только глобальные круговороты, охватывающие всю биосферу в целом. Кроме этого, существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности, аналогичных биогеохимическим циклам биосферы.

Подобные движения вещества можно наблюдать и в цитоплазме одноклеточных организмов. Даже в небиологических системах при достаточно большой разнице сил на входе и выходе системы можно наблюдать переход ее в нелинейное состояние, иногда достаточно явно сопровождающийся возникновением циклических движений вещества или автоколебаний (например, турбулентное течение жидкости, ячейки Бернара, реакции Белоусова – Жаботинского и т. п.). Иначе говоря, внутрисистемный круговорот веществ – это и есть способ аккумулировать энергию в системе.

Движение энергии в биосфере существенно отличается от движения вещества.

Согласно принципу роста энтропии поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество уменьшает энтропию части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться, но ее нельзя использовать вторично.

Принципиальная невозможность утилизации тепловой энергии на фоне прогрессирующего роста количества энергии, высвобождаемой человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т. п.) помимо солнечной энергии, есть один из важнейших факторов надвигающейся экологической катастрофы.

Известно, что потребление энергии человечеством на нашей планете исторически протекало крайне неравномерно и возрастало параллельно со скоростью накопления информации. Люди за всю историю своего существования израсходовали около 900–950 тыс. ТВт∙ч энергии всех видов, причем почти две трети этого количества приходится на последние 40–50 лет. За последние 100 лет мировое потребление энергии увеличилось в 14 раз. Суммарное потребление первичных энергоресурсов за это время превысило 380 млрд т условного топлива со средним КПД энергетики техносферы, равным 30 %.

Относительный вклад различных энергоносителей в общее использование энергии характеризуется такими средними величинами: уголь – 27 %; нефть – 34, газ – 17, гидроэнергия – 6, ядерная энергия – 8,5, прочие источники – 7,5 %.

Энергетическая мощность нынешней техносферы по величине приблизительно равна 6 % всей продукционной мощности экосферы.

3.4.3. Энергетика биосферы

Энергия – это способность совершать работу. Несмотря на то что вся современная наука проникнута этим понятием, природа энергии до сих пор до конца не понята.

Впервые наиболее полно понятие энергии было проработано в термодинамике, что вылилось в формулировку двух наиболее основополагающих законов, описывающих свойства энергии.

Более 100 лет назад установлен первый закон термодинамики , или закон сохранения энергии , – один из фундаментальных законов физики, который нашел свое подтверждение в различных областях – от механики Ньютона до ядерной физики.

Согласно этому закону энергия не может быть уничтожена или получена из ничего, она может лишь переходить из одной формы в другую, т. е. никогда не исчезает и не создается заново.

Частным случаем данного закона является первое начало термодинамики , которое устанавливает взаимную превращаемость всех видов энергии: теплота Q , сообщенная неизолированной системе (например, пару в тепловой машине), расходуется на увеличение ее внутренней энергии ΔU и совершение ею работы А против внешних сил:

Q = ΔU + A .

Второе начало термодинамики , или закон возрастания энтропии , – все реальные процессы превращения энергии сопровождаются ростом энтропии, т. е. переходом энергии в более рассеянное состояние.

Все процессы в природе подчиняются действию этих законов термодинамики и непосредственно связаны с количеством и качеством используемой энергии.

Энтропия – это величина, характеризующая направление естественных процессов теплопередачи и, как выяснилось, вообще любых процессов преобразования энергии.

Энтропию называют тенью энергии. В более широком смысле под энтропией понимают меру качества, т. е. меру концентрации и упорядочения энергии. Тепловая энергия с бо́льшей температурой обладает меньшей энтропией:

S = Q / T ,

т. е. бо́льшим качеством, чем такое же количество теплоты при меньшей температуре. Поэтому по мере понижения температуры рабочего тела, например пара, до температуры окружающей среды можно попутно превратить часть тепловой энергии в механическую работу (тепловая машина). Чем больше качество энергии, т. е. чем больше превышение температуры пара над температурой окружающей среды, тем большее количество работы можно получить.

Разные виды энергии обладают разным качеством. Например, упорядоченное движение частиц твердого тела (механическое движение) обладает бо́льшим качеством, чем хаотичное движение этих же частиц с той же средней скоростью (тепловое движение). Поэтому любое механическое движение при наличии трения сопровождается самопроизвольным превращением части механической энергии в тепловую.

Если говорить об энергии, особенно в контексте, связанном с энергетическим кризисом, следует помнить, что энергии на Земле вполне достаточно. Теплоход, идущий по океану, двигается по морю энергии. Тем не менее он вынужден везти с собой запас угля, потому что энергия океана обладает низким качеством. Для полезного использования нужна именно высококачественная энергия, энтропия которой ниже энтропии энергии, рассеянной в окружающей среде. Энергию океана можно использовать только при наличии холодильника с более низкой температурой, чем температура океана.

Именно разность энтропий на входе и выходе энергетического потока порождает фактор, который обозначается понятием силы , приводящей в движение все процессы в природе. По сути, любая сила имеет энтропийную природу.

Наличие упорядоченных структур типа кристаллических решеток способствует упорядочению движения частиц за счет уменьшения их степеней свободы. Принцип роста энтропии требует роста количества степеней свободы в каждом реальном процессе превращения энергии. Поэтому все упорядоченные структуры имеют тенденцию к разрушению. «Все разрушается, все умирает, все приходит в хаос» – это еще одна формулировка второго закона термодинамики.

Помимо такого разрушения есть еще один способ увеличения количества степеней свободы – усложнение структуры системы. Именно по этому пути движется глобальный эволюционный процесс. При этом природа никогда не стремится достичь полного хаоса на данном уровне системной иерархии. В этом случае эволюция Вселенной остановилась бы достаточно быстро. Как правило, в пределах данного иерархического уровня образуются некоторые устойчивые структуры, из которых строятся более высокие иерархические уровни, характеризующиеся бо́льшими значениями максимально возможной энтропии, чем на предыдущем уровне. Это дает возможность непрерывному росту энтропии.

Обычно тенденция к возникновению хаоса реализуется в стремлении вещества к рассеянию (например, растворение сахара в воде). Но в случае сложных органических соединений бо́льший хаос (рассеяние энергии) может быть достигнут именно при концентрации вещества. Например, капельки масла, рассеянные в воде, стремятся слиться в одну большую каплю, в связи с тем что молекулы воды окутывают молекулы углеводорода масла своеобразной упорядоченной оболочкой. Чем больше поверхность масла, тем более упорядоченными оказываются молекулы воды, чего природа допустить не может, и в хаосе движения капель они обязательно рано или поздно примут состояние с наименьшей поверхностью, т. е. сольются в одну большую каплю.

Именно это, вероятно, послужило в свое время началом одноклеточной жизни. Именно так в растворе белковых молекул формируются коацерватные капли, имеющие стабильную и иногда достаточно сложную структуру и поглощающие из раствора строго определенные вещества.

В биосистемах стремление к хаосу реализуется в еще более сложных механизмах. Клетка может увеличить площадь своей поверхности, например приобрести форму эллипсоида, цилиндра (палочки) или нити, образовать корнеподобные выросты, ложноножки и т. п. Многоклеточные организмы решают подобную проблему аналогичным образом. У растений увеличивается поверхность листьев и корней. У животных в отличие от растений подобное увеличение поверхности осуществляется обычно внутри организма, чтобы не мешать движению. Достаточно вспомнить развитые поверхности кишечника, органов дыхания, кровеносной системы и т. п. Например, общая поверхность всех эритроцитов взрослого человека составляет около 3000 м 2 , общая длина всех капилляров – около 100 000 км и т. д.

Нечто аналогичное происходит и в рамках таких сверхорганизмов, как экосистемы. Здесь дифференциация достигается увеличением экологических ниш и разнообразия видов, населяющих данную экосистему, удлинением и усложнением пищевых цепей, совершенствованием внутривидовых и межвидовых отношений и т. п. Все это есть следствие принципа роста энтропии.

Таким образом, разрушение структуры, требуемое принципом роста энтропии, является необходимым компонентом жизненного процесса. Но жизнь научилась использовать разрушение во благо, поэтому разрушение не обязательно сопровождается гибелью биосистем. Умеренное разрушение, на которое накладываются определенные запрограммированные ранее ограничения, приводит к расширению и усложнению жизни. Наиболее характерно в этом отношении деление клетки. Здесь смерть и рождение слились в одном процессе.

Если движение вещества зачастую организуется в глобальный круговорот, захватывающий многие экосистемы биосферы, то движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния теплоты, вначале утилизирующейся в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучающейся в космическое пространство (в инфракрасной части электромагнитного спектра).

Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма: ΔS > 0. Для того чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию (негэнтропию, информацию) ΔS < 0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Нужно взять из окружающей среды необходимые компоненты (пища) и создать условия для протекания реакции, продуктами которой должны стать вещества, содержащие в своей структуре больше энтропии, чем исходные компоненты. Обычно в этих реакциях разрушаются структуры более сложных молекул (например, молекул белка, жиров или углеводов). Затем эти продукты распада удаляются из организма. Себе же организм оставляет нечто, характеризующееся разницей энтропии исходных компонентов и энтропии продуктов реакции. Это нечто называется свободной энергией , которая по отношению к данному организму обладает отрицательной энтропией (негэнтропией) и за счет которой приводятся в движение внутренние упорядоченные процессы.

Например, глюкоза используется в организме, образуя диоксид углерода и воду. Это один из самых универсальных процессов, который лежит в основе дыхания и пищеварения. Диоксид углерода и вода удаляются из организма при дыхании, потовыделении, с экскрементами и т. п. Высвобожденная энергия претерпевает ряд превращений, обеспечивая тем самым протекание всех физиологических процессов, двигательных функций и т. п. Эту часть энергии рассматривают как траты на дыхание. Частично деградируя в каждом таком превращении, энергия постепенно полностью переходит в теплоту, которая после этого удаляется из организма в окружающую среду.

Однако не вся свободная энергия проходит через организм подобным путем. Часть свободной энергии используется на организацию ряда эндотермических реакций, т. е. связывается в сложных молекулярных структурах. В первую очередь это реакции синтеза необходимых белков, нуклеиновых кислот и т. п. В данном случае доля свободной энергии идет на упорядочение внутренней структуры организма. Эта энергия, накопленная в веществе организма, называется продукцией .

Некоторая доля пищи не усваивается организмом, следовательно, из нее не высвобождается энергия. Она выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

Ввиду наличия в своей структуре сложных молекулярных соединений данный организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Высвободившаяся свободная энергия используется так же, как в вышеописанном случае. Таким образом, формируется пищевая , или трофическая, цепь , в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими.

Ключевые вопросы

Как происходит передача энергии в биосфере?

Каким образом азот из воздуха попадает в живые организмы и затем опять в воздух?

Почему элементы, существующие в твердом состоянии, например фосфор, выпадают из круговорота веществ?

Каким образом человеческая цивилизация влияет на равновесие этих важных циклов?

Экосистема является основной единицей или естественным сообществом биосферы и состоит из абиотической среды, биотических компонентов - растений, грибов, животных и микроорганизмов, а также включает в себя взаимоотношения, связывающие между собой все части системы. Маленькое или большое соленое болото (марш) представляет собой одну экосистему, прибрежная дюна - другую, а болото, дюны и океан могут рассматриваться как часть более крупной экосистемы.

Экосистемы нашей планеты удивительным образом различаются в разных ее частях. Но хотя тропический влажный лес или коралловый риф имеют как будто мало общего с холодной тундрой или открытым морем, действие всех экосистем основывается на четырех общих принципах: 1) Каждая экосистема должна иметь способ поглощать энергию и направлять ее всем своим обитателям. 2) В каждой экосистеме должен происходить круговорот необходимых питательных веществ. 3) В каждой экосистеме устанавливается и сохраняется динамическое равновесие. 4) Поток энергии и веществ зависит от информативной характеристики организмов; этот поток бесполезен без организмов и уникальной роли каждого из них.

25.1. Экосистема сохраняет свою стабильность благодаря сложной сети взаимосвязей между ее элементами

Экосистемы имеют высокоорганизованную структуру взаимодействия между всеми компонентами. Уже не раз, но, как правило, слишком поздно, мы сознавали важность этого факта. Мы часто слышим, что можно обойтись без того или другого вида. Но откуда мы можем это знать?

Более столетия назад Чарлз Дарвин установил связь между урожаем семян лугового клевера и числом кошек, живущих в сельской местности. Он обнаружил, что луговой клевер образует семена только при перекрестном опылении, которое может осуществляться только шмелями. Число шмелей, установил он, сильно сокращали полевые мыши, а число мышей, конечно же, контролировалось кошками.

Благодаря такой сложной взаимозависимости оказывается вполне возможным, что некоторые, казалось бы, явно посторонние или даже вредные виды или физико-химические компоненты могут играть неожиданно важную роль в процветании другого неродственного вида.

Вот пример того, какие неожиданности могут нас подстерегать, если вмешаться во взаимоотношения природы. На острове Калимантан для борьбы с малярией против москитов использовались пестициды. Тараканы также попадали под эту обработку. Но они не умирали, а просто становились ядовитыми для мелких ящериц. Поскольку ДДТ является отравляющим веществом нерв-нопаралитического действия, ящерицы становились менее подвижными и не в состоянии были убегать от кошек, которые охотно их поедали. А поскольку кошки очень чувствительны к ДДТ, умирали и они. Крысы из близлежащих лесов, несущие бациллу чумы, заполнили дома, где не было кошек. Когда завезли новых кошек, они продолжали поедать ящериц, причем настолько эффективно, что это привело к массовому увеличению числа гусениц, которыми питаются ящерицы; гусеницы, в свою очередь, поедали солому, покрывающую крыши домов. Это, конечно же, не конец истории, и маловероятно, что расширяющийся водоворот неприятных последствий остановится до того, как проявится реальный ущерб. Даже если бы первоначальный план противомалярийной компании удался, мог ли кто-нибудь гарантировать, что спасенные от малярии люди будут обеспечены пищей, волокном, удобрениями, тракторами, автомобилями, дорогами, самолетами и больницами? Поставим вопрос более прямо: для того ли мы используем нашу технику, чтобы сначала спасти людей только от малярии, а позднее дать им умереть от голода?

Если удаление организмов из экосистемы может оказаться рискованным, то рискованным может быть и введение в нее новых видов. Так, например, мангусты, завезенные на острова для борьбы со змеями, вызвали вымирание некоторых местных видов птиц. Ясно, что заблаговременная оценка последствий того или иного вмешательства связана с определенными трудностями. В то же время в экосистемах действуют механизмы, способные нейтрализовать эти последствия. Поскольку небольшие изменения могут породить массу других со скоростью снежного кома меры борьбы с хищниками должны разрабатываться в зависимости от вида хищника, против которого они направлены.

25.2. Источником почти всей энергии, используемой экосистемами, является Солнце

Основная часть энергии, поступающей на Землю, за исключением собственной энергии нашей планеты, образуется в результате ядерных преобразований на Солнце. Почти половина солнечной радиации, проникающей в атмосферу (рис. 25-1), отражается обратно в космическое пространство. Другая половина поглощается землей. За исключением общего потепления, которое образуется в результате, это не принесло бы нам пользы, если бы растения не обладали способностью усваивать поступающую солнечную энергию и, таким образом, делать ее доступной для экосистемы.

В среднем почти каждый квадратный метр земли получает около 4,19кДж солнечной радиации в минуту. Это примерно равно количеству теплоты, получаемой при сгорании половины спички. Но только половина этой энергии потенциально доступна для растений, остальная часть находится вне пределов видимого спектра. Растения поглощают около l-5% энергии, достигшей поверхности земли, и фиксируют ее в процессе фотосинтеза для образования Сахаров и других углеводов. Эти растения, называемые продуцентами (производителями), используют часть фиксированной энергии для дыхания, поскольку они должны восстанавливать и увеличивать свою клеточную массу. Все травоядные и плотоядные животные-потребители зависят от фиксированной энергии, которая идет на удовлетворение их собственных энергетических потребностей и на образование сырьевого материала. Это относится и к организмам-разрушителям (грибам и микроорганизмам), которые разрушают мертвые ткани и освобождают питательные вещества в такой форме, чтобы продуценты опять могли их использовать. Каждая экосистема имеет своих продуцентов, потребителей и разрушителей.

25.3. При переходе энергии от растений к животным теряется около 90% ее количества

Корова, питающаяся травой* является примером первичного перехода энергии от продуцента к травоядному потребителю. Крошечные, похожие на креветок морские копеподы (веслоногие ракообразные), питающиеся микроскопическими водорослями, представляют собой пример такого же превращения энергии в водной среде. Коровы и копеподы получает только определенный процент энергии из используемых ими растительных веществ. Этот процент различается в зависимости от условий, но в среднем около 10% энергии продуцента дает прибавку массы травоядному животному. Эти 10% представляют собой коэффициент передачи энергии. Остальные 90% рассеиваются в вдде тепла, необходимого для функционирования клеточных механизмов и органов тела, или освобождаются непосредственно для редуцентов (организмов-разрушителей) в виде различных побочных продуктов.

Травоядные обычно являются пищей для плотоядных, и превращения энергии при переходе от травоядного к плотоядному происходит с эффективностью от 10 до 30%. Такое увеличение эффективности передачи энергии, очевидно, связано со сходным составом тканей у животных. Когда одно плотоядное животное поедает другое, а тот поедает следующего и т.д., то в результате получается цепь питания из нескольких звеньев. Число звеньев в цепи питания редко превышает пять из-за большой потери энергии в каждом звене. Это означает, что на каждом более высоком трофическом уровне поток энергии сильно уменьшается. Если подсчитать количество энергии на каждом трофическом уровне (растения, травоядные, первичные плотоядные, вторичные плотоядные и т. д.), мы увидим, что получится своеобразная энергетическая пирамида с широким основанием и очень узкой вершиной, которая соответствует высшему уровню в цепи питания (рис. 25-2). За некоторыми исключениями имеется тенденция к постепенному уменьшению потока энергии и количества особей и к увеличению размера этих особей в направлении от основания к вершине пирамиды.

При такой низкой эффективности передачи энергии от одного трофического уровня к другому очевидным, но довольно уязвимым преимуществом оказывается близость к первичным продуцентам. Это относится как к человеку, так и к другим потребителям, и в перенаселенных странах имеет смысл, хотя и не очень привлекательный сам по себе, использование вегетарианской диеты. Ведь гораздо больше людей можно прокормить рисом, чем если бы этот рис скармливать курам и свиньям и затем уже использовать в пищу.

Цепь питания от риса к человеку или от диатомии к копеподу затем к сельди и чайке до удивления проста. Хотя существует много животных, которые питаются только одним видом, обычно любой организм на любой трофической стадии приспособлен к потреблению целого ряда организмов, принадлежащих иногда к тому же уровню, что и он сам, а иногда к совершенно различному трофическому уровню. В результате образуется сложная "паутина" трофических отношений , которая благодаря множеству путей и превращений является более стабильной, чем прямая цепь питания, которая может легко распасться из-за недостаточной численности какого-нибудь одного вида.

25.4. Редуценты разрушают органические остатки и превращают их в сырьевой материал для растений

Количество энергии, используемой первичным потребителем, например когда корова поедает траву, меньше установленных 90%, если учитывать энергию, освобождаемую для редуцентов. В этом случае охапка сена не только обеспечивает потребности в энергии самой коровы (большая часть этой энергии превращается в тепло тела) и множества симбионтов ее пищеварительной системы, а через экскременты и в конечном итоге через труп коровы энергия переходит к насекомым, червям и миллионам микроорганизмов. В процессе обеспечения собственных потребностей в энергии эти организмы превращают вещества в такую форму, в которой они опять могут быть использованы растениями.

25.5. Энергия, используемая на Земле, в конечном итоге превращается в лучистую энергию, которая опять переходит в космическое пространство

Как видно из рисунка 25-3, запас земной энергии является сбалансированным. Биосфера и остальная часть Земли действуют как гигантский преобразователь энергии, получающий насыщенный энергией видимый свет, который возвращается в космическое пространство в виде трансформированного и невидимого излучения. Биосфера эффективно замедляет превращение энергии, задерживая ее в виде химической энергии и используя ее для обеспечения жизни на Земле. Но за исключением энергии угля, нефти и близких к ним соединений энергии не свойственно оставаться на Земле долгое время.

Говоря о потоке энергии в экологическом сообществе, важно помнить, что после фиксации солнечной энергии зелеными растениями ее движение в экосистеме всегда сопровождается потоком веществ.

Наблюдая, как охотится за полевой мышью ястреб, мы видим один из путей, по которому осуществляется движение энергии в экосистеме.

Большое значение имеют и непрямые наблюдения, и одним из лучших методов определения путей передвижения энергии и веществ в экосистеме является включение в растения радиоактивных изотопов фосфора, углерода, калия или других элементов. При дальнейшем исследовании данной местности (с помощью счетчика радиоактивности) может оказаться, что, например, в муравьином гнезде отмечается высокая радиоактивность. Тогда можно было бы предположить, что муравьи собирали растительные вещества или что они использовали тлю, питавшуюся растительным соком. При более позднем исследовании радиоактивность жуков и птиц может оказаться выше средней и в конце концов радиоактивность может обнаружиться у грызунов и птенцов в ближайшем ястребином гнезде. И наконец, мы могли бы обнаружить распространение радиоактивности обратно в почву и первичные продуценты.

25.6. Углерод, как и другие основные элементы, участвует в сложном биохимическом цикле

Хотя и тесно связанные между собой, потоки энергии и вещее в экосистеме значительно отличаются друг от друга. Энергия эта должна постоянно пополняться, так как вещества используются неоднократно. Возможно, что какой-то из атомов углерода вашего тела являлся составной частью структуры миллионов других организмов на протяжении истории жизни, и то же самое можно сказать о любом атоме живых тканей.

Из более чем 100 элементов, существующих на Земле, около 30 являются жизненно важными для живых организмов. Некоторые нужны в больших количествах, как, например, углербд, водород, кислород и азот, а некоторые в небольших количествах. Однако все они должны циркулировать в биосфере. Существуют два основных типа циклов: один включает в себя газы и твердые вещества, другой - только твердые вещества. Фосфор не циркулирует в биосфере в виде газа, но он может поступать в атмосферу в виде частиц. Углерод представляет собой элемент, который в твердом состоянии попадает в живые организмы и в землю, а в виде углекислого газа - в воздух.

Рассмотрим возможную судьбу одного атома углерода в молекуле СО2. Этот газ может растворяться в морской воде (СО 2 +Н 2 О->Н 2 СО 3), образуя угольную кислоту Н 2 СО 3 или ее отдельные компоненты: ионы Н + , бикарбонат НСО - 3 или карбонаты СО 2- 3 . Эти анионы ассоциируются с катионом кальция Са 2+ и в теплой воде могут осаждаться в виде извести, углекислого кальция СаСО 3 . В такой форме атом углерода может стать составной частью известкового остова кораллового рифа.

Коралл в конце концов разрушается, и известь откладывается на дне моря. Проходят тысячи лет. Слой извести оказывается глубоко под покровом различных наносных отложений. Давление в мантии Земли в конечном итоге приводит к поднятию на поверхность известковой горной цепи. Под действием ветра и дождя происходит медленная эрозия ее верхних слоев и частицы породы растворяются в грунтовой воде. Когда СаСО 3 попадает в кислую почву, освобождается углекислый газ, который поступает в воздух (2Н + +СаСО 3 ->Са 2+ +СО 2 +Н 2 О). Из воздуха углекислый газ усваивается листьями растений, например дубовыми. При фотосинтезе углекислый газ включается в состав углеводов, которые благодаря синтетической активности дубовых листьев опять окисляются в СО 2 . Из воздуха молекула СО 2 может попасть в устьице ближайшего олеандрового листа и опять восстанавливаться в виде углеводов. Затем атом углерода может попасть в организм тли и стать частью аминокислоты. Через несколько часов божья коровка поедает тлю. Через три дня, когда божья коровка становится добычей малиновки, тот же атом углерода входит в состав белка мышечных клеток малиновки. Спустя неделю малиновка попадает в когти ястреба, в организме которого аминокислота, содержащая этот атом углерода, включается в белок пера. Спасаясь от дикой кошки, ястреб теряет перо, и оно попадает в благоприятную почву, где слой за слоем покрывается мхом. Мох, а вместе с ним и это перо превращаются в торф. Однажды этот торф срезали и сожгли, а атом углерода опять освободился в виде углекислого газа. Через несколько дней он растворяется в дождевой капле и снова попадает в море. Рисунок 25-4 иллюстрирует в более обобщенном виде цикл круговорота углерода. Однако этот путь может быть и несколько иным. В действительности в чистом виде углерод не циркулирует. Он входит в состав молекул, которые движутся иногда быстро, иногда медленно в тысячах разных направлений - из суши в море, из моря в море, от континента к континенту, от растения к животному, от животного к растению, из организма в атмосферу и т.д. Цикл каждого атома углерода различен.

25.7. Азот циркулирует в биосфере так же, как углерод

Цикл азота (рис. 25-5) в основном сходен с циклом углерода, за исключением того, что большинство зеленых растений не способны получать азот из атмосферы. Они усваивают его с помощью определенных азотфиксирующих бактерий и сине-зеленых водорослей, способных фиксировать атмосферный азот в организме в виде различных соединений, пригодных для использования зелеными растениями. Некоторые ученые считают странным, что все растения и животные испытывают потребность в азоте, но только некоторые из них, очень маленькие, способны усваивать его из атмосферы. Остальные растения (и животные) зависят от азотфиксирующих бактерий и водорослей при превращении атмосферного азота в пригодные для использования соединения.

Зеленые растения поглощают азот в основном в форме солей азотной кислоты и используют его для синтеза белков и нуклеиновых кислот. Если растения потребляются в качестве пищи, азот в составе их аминокислот и белков поступает в организм потребителя. В конечном итоге азот освобождается из организма в виде азотистых отходов, таких, как моча, мочевая кислота и аммиак, или при разложении тканей. Отходы окисляются несколькими видами нитрифицирующих бактерий и опять становятся доступными в форме нитратов или нитритор. Таким образом, атом азота обычно используется много раз, но иногда, в форме аммиака, нитрата или нитрита. Под действием денитрифицирующих бактерий он выделяется в газообразном состоянии. Газообразный азот может опять связываться в нитраты под действием бактерий или в результате фотоэлектрической активности в атмосфере.

25.8. Деятельность человека привела к нарушению равновесия кругооборота азота

Круговорот азота в природе сбалансирован, но в некоторых частях земного шара условия окружающей среды сильно изменились за последние три четверти века. Например, в США фермеры, старавшиеся получать богатые белком зерновые культуры, очень скоро исчерпали естественный запас нитратов в почве. Некоторые из них начали использовать севооборот культур и употреблять навоз в виде удобрения на полях. Это способствовало сохранению содержания органического азота в почве и не нарушало физическую структуру почвы, так что дренаж и аэрация (с помощью червей и т. д.) осуществлялись по-прежнему хорошо. Применение химических удобрений вместо азотсодержащих органических отходов также позволяло получать хорошие в экономическом отношении растения, но не обеспечивало нужную пропорцию остатков органических веществ в почве. Почва, таким образом, становилась все менее и менее пористой. Растения, выращиваемые на такой почве, имели недостаточный доступ кислорода к корням и не могли использовать все количество нитрата, который добавлялся в почву. Оставшийся нитрат терялся в результате выщелачивания и вымывания или превращался в аммиак, газообразный азот и окислы азота.

Таким образом, в почве с обедненным содержанием гумуса азотные удобрения обеспечивают питательными веществами данное растение, но вызывают дальнейшее обеднение почвы, нарушая равновесие почвенной системы. Большая часть из 10 млн. т азота, внесенных в почву в США, рассеивается в атмосфере в виде газа или вместе с дождем, снегом смывается в озера и реки.

Это имеет одно особенно опасное последствие, которое можно увидеть на примере озера Эри. Переизбыток азотистых остатков сельскохозяйственных удобрений в сочетании с повышенным уровнем фосфора вызвало здесь усиленное "цветение" водорослей. Процесс, вызывающий такое цветение, называют эутрофтацией . Водоросли, поглощая неорганический азот и превращая его в органический дли обеспечения собственного роста, быстро растут, быстро отмирают и загрязняют озеро органическим веществом. Основная проблема заключается в том, что водоросли отмирают вскоре после цветения, и разлагающие бактерии и грибы используют так много кислорода при их разложении, что в воде не остается достаточного количества кислорода для других организмов. Редуценты, живущие на таком органическом веществе и превращающие его в неорганические соли, нуждаются в кислороде, и если они не получают его, органическое вещество и побочные продукты анаэробного разложения скапливаются на дне озера.

Нарушается и круговорот азота в атмосфере. Каждый год в США промышленные установки и двигатели автомобилей образуют из атмосферного азота и кислорода более чем 8 млн. т окислов азота. Некоторые из эти* оксидов на солнечном свету и в соединении с отходами топлива образуют смог, другие окисляются до нитратов, которые вместе с дождем и снегом снова попадают в почву и воду, удобряя растения или усиливая эутрофикацию воды.

Интенсивное использование искусственных удобрений временно способствовало поддержанию высокого уровня продуктивности сельскохозяйственных растений. Однако оно поставило перед серьезной угрозой будущие посевы, вызвав исчезновение азотфиксирующих бактерий и нарушив равновесие круговорота азота. Кроме того, оно в значительной степени явилось причиной усиленного цветения водорослей, портящих водоемы.

25.9. Сера совершает кругооборот в биосфере и, образуя сульфаты, связывает большое количество кислорода

Всем живым организмам для образования некоторых аминокислот требуется сера. Рисунок 25-6 иллюстрирует основные пути кругооборота этого элемента. Растения извлекают ионы серы из почвы и передают их животным. Часть серы из почвы смывается в море, где она используется водными организмами или тысячелетиями сохраняется в виде осадков.

Осадки в конечном итоге уплотняются, образуя угольную или нефтеносную породу, сланцы и т. д. Затем рера продолжает участвовать в круговороте или в результате выветривания пород, или в виде продуктов сгорания при использовании человеком нефти и угля в качестве топлива.

Подобно нитратам, все больше и больше сульфатов скапливается в море. Источником пополнения запаса серы, участвующей в круговороте, могут быть различные сульфаты, но те из них (SO 2- 4), которые выщелачиваются из почвы, представляют собой часть земного запаса кислорода и тысячелетиями не участвуют в круговороте. Существует только один процесс, который работает в обратном направлении и освобождает кислород из сульфатов. Этот процесс осуществляется сулmфатвосстанавливающими бактериями , живущими в иле озер, болот и эстуариев. Эти бактерии погибают при наличии свободного кислорода и поэтому живут в бескислородной среде. Они используют серу так же, как другие организмы используют кислород, и превращают SO 2- 4 в сероводород (H 2 S) и кислород. Однако, скорее всего, потому, что значение этих бактерий неизвестно большинству людей, производится осушение маршей и засыпка болот. Некоторые ученые полагают, что продолжение осушительных мероприятий даже в таком же масштабе, как они ведутся сейчас, может повлиять на снабжение окружающей среды кислородом.

25.10. Фосфор и несколько десятков других минеральных веществ совершают кругооборот в экосистемах не в газообразном состоянии

Фосфор необходим растениям и животным для образования ДНК и АТФ, богатого энергией, а животным, кроме того, для образования костной ткани. Круговорот фосфора несколько отличается от круговорота углерода, азота и серы, поскольку он никогда не существует в газообразном состоянии.

Фосфор перемещается в основном в воде или в составе органических веществ (рис. 25-7) и участвует в так называемом осадочном круговороте . Меньшая его часть движется в виде частиц в атмосфере. Фосфор особенно чувствителен к действию силы тяжести и быстро скапливается в озерах и морях. Там он имеет тенденцию оставаться в осадках и возвращаться на поверхность Земли только в результате чрезвычайно медленных процессов горообразования. В связи с этим, а также потому, что фосфор относительно больше концентрируется в организмах, чем в окружающей среде, он часто становится фактором, ограничивающим рост организмов. (Если организм имеет в достаточном количестве все необходимые питательные вещества за исключением фосфора, недостаток этого вещества ограничивает его рост.) Поскольку источником фосфора являются горные породы и почва, его содержание в них не сразу восстанавливается после удаления фосфора с данной площади. Продуктивность экосистемы, будь это лер, озеро, бухта или луг, может оказаться значительно пониженной в связи с недостатком фосфора.

Медь, железо, магний, кобальт, цинк, бор и несколько десятков других элементов также необходимы в экосистемах. Их круговорот сходен с круговоротом фосфора, поскольку они, как правило, не существуют в газообразном состоянии и не могут перемещаться в атмосфере. Некоторые из перечисленных элементов добавляются во все более увеличивающихся количествах на поля, хотя это может привести к нарушению естественной структуры и равновесия в почве, к загрязнению водных путей и т. д. Чем больше будет таких и подобных им нарушений, тем больше химической энергии - в виде удобрении, пестицидов, горючего для сельскохозяйственных машин и т. д. - должно быть вложено, чтобы получить такой же урожай. Развитие сельского хозяйства в действительности зависит от наличия ископаемого топлива (используемого в качестве горючего и при производстве удобрений, электричества и т. д.), а не от количества рабочей силы или естественного круговорота веществ. По мере расхода ископаемых видов топлива и увеличения их стоимости возрастают цены на продукты питания, а потребность в них не уменьшается.