Металлы известные с глубокой древности. Железо - один из семи металлов древности. Современные технологии обработки

Быстрый поиск по тексту

Категории металлов

К драгоценным или благородным металлам относится ряд веществ, которые обладают повышенной износостойкостью, не подвержены влиянию коррозии и окисления. Кроме того, их драгоценность обуславливается редкостью. Всего насчитывается 8 видов и выделяют:

  • . Пластичное, не подвергается коррозии, ρ (плотность) = 19320 кг/м3, t плавления – 1064 Сᵒ.
  • . Обладает тягучестью и ковкостью, обладает высокой отражающей способностью, электрической проводимостью, ρ = 10500 кг/ м3, t плавления – 961,9 Сᵒ.
  • . Тягучий, тугоплавкий, ковкий элемент, ρ = 21450 кг/ м3, t плавления – 1772 Сᵒ.
  • . Обладает мягкостью и ковкостью, имеет серебристо-белый цвет, наиболее легкий, плавкий, пластичный элемент, не поддается коррозии, ρ =12020 кг/ м3, t плавления – 1552 Сᵒ
  • . Твердость и тугоплавкость выше среднего, отличается своей хрупкостью, не поддается воздействию щелочей, кислот и их смесей, ρ = 22420 кг/ м3, t плавления – 2450 Сᵒ
  • . Внешне схож с платиной, однако, имеет большую твердость, хрупкость и тугоплавкость, ρ = 12370 кг/ м3, t плавления – 2950 Сᵒ.
  • Родий. Твердость выше среднего, тугоплавкий, хрупкий, имеет высокую отражательную способность, не подвергается воздействию кислот, ρ = 12420 кг/ см3, t плавления – 1960 Сᵒ
  • Осмий. Тяжелый, имеет повышенную тугоплавкость, твердость выше среднего, хрупкий, не поддается воздействию кислот, ρ = 22480 кг/ м3, t плавления – 3047 Сᵒ.

Схожие по своему химическому строению и по цвету(серебристо-белый) элементы. Насчитывается 17 видов этих металлов. Они были обнаружены в 1794 году в Финляндии, химиком Юханом Гадолином. К 1907 году этих элементов стало уже 14. Современное же название «редкоземельный» было присвоено данной группе к концу 18 века. Долгое время ученые предполагали, что элементы, относящиеся к этой группе, редко встречаются. Известны такие редкоземельные металлы:

  • Тулий;

Что касается химических свойств, то металлы образуют тугоплавкие и не растворимые в воде оксиды.

Первое освоение металлов

IV тысячелетие до нашей эры принесло человечеству судьбоносные изменения. Наиболее важным процессом стало освоение металлов. В это время человек обнаруживает такие металлы как медь, золото, серебро, свинец и олово. Наиболее быстро была освоена медь.

Изначально металл добывался из руды методом обжига на открытом огне. Эта техника была освоена примерно в VI-V тысячелетии до нашей эры на территории Индии, Египта и Западной Азии. Наиболее широко медь применялась для изготовления орудий труда и оружия. Придя на смену каменным орудиям, медь значительно облегчила труд человека. Изготавливали предметы труда при помощи глиняных форм и расплавленной меди, ее заливали в формы и ждали пока она остынет.

Кроме того, освоение меди дало новый виток в развитии общественного строя. Это положило начало расслоению общества по благосостоянию. Медь стала признаком богатства и благополучия.

К V тысячелетию человек знакомится с драгоценными металлами, а именно с серебром и золотом. Ученые предполагают, что первым был медно серебряный сплав, он назывался биллон.

Изделия из данных металлов являются находками древних захоронений. В древние времена эти элементы добывали в Египте, Испании, Нубии, на Кавказе. В России также происходила добыча, во II-III тысячелетии до нашей эры. Если металлы добывались из россыпей, то их промывали песком на подстриженных шкурах животных. Чтобы добыть металл из руды, ее нагревали, она трескалась, затем ее дробили, истирали и промывали.

В Средневековье добывалось по большей части серебро. Большая часть добычи производилась в Южной Америке (Перу, Чили, Новая Гранада), Боливии, Бразилии.
В начале ХVI века жители Испании обнаружили платину, которая очень напоминала серебро и поэтому его уменьшительно-ласкательной версией испанского слова «plata» – «platina», что в переводе значит – маленькое серебро или серебришко. С научной точки зрения платина рассмотрена в 1741 году Уильямом Уотсоном.

1803 год – открытие палладия и родия. В 1804 – иридия и осмия. Еще через четыре года открыт вестий, в последствии переименованный в рутений.

Что касается редкоземельных металлов, то до 60-х годов ХХ века они не были интересны в научных сообществах. Однако, именно в это время возникает технология выделения чистых металлов. Тогда же выяснились мощные магнитные свойства этих металлов. Со временем стало возможным выращивание монокристаллов этих металлов. Сегодня редкоземельные металлы позволяют производить множество предметов быта, без которых человек не представляет свое существование, например, энергосберегающие лампы. А также военную и автомобильную технику.

Современная добыча драгоценных металлов

В современное время наиболее ценным металлом считается золото. Именно его добыче уделяется наибольшее количество ресурсов. Первые «золотые жилы» были освоены на территории Африки, Азии и Америки.

Сегодня золото добывается в Южной Америке, Австралии и Китае. Россия является одной из наиболее масштабных золотодобывающих стран и занимает четвертое место в мире. Добыча ведется 16 компаниями в Магадане, Амурской области, Хабаровской области, в Красноярском крае, в Иркутской области и на Чукотке.

Методы добычи

До тех пор, пока не была придумана современная технология добычи драгоценных металлов, они добывались вручную. И сказать, что это крайне трудоемкий процесс, значит, ничего не сказать.

Итак, современные процессы золотодобычи:

  • Просеивание. Такой вид добычи золота был популярен во времена «золотой лихорадки» в Америке. Этот метод требовал больших усилий, терпения и навыков. Основными инструментами были сита, ведра с решетками на дне или мешки. Для того, чтобы найти хоть каплю золота человек заходил в реку по пояс, зачерпывал воду и выливал ее на сито и в ведро с решетчатым дном. Таким образом, на его поверхности оставались крупные камни и золотые частицы. При этом сито или решетчатое дно нужно было постоянно удерживать на поверхности, чтобы вымыть ненужные камни, песок и воду и оставить лишь частицы драгоценного металла. Сегодня данный метод редко используется.
  • Добыча из золотоносной руды. Это также ручной способ добычи. Здесь инструментами служили лопата, молоток для раздробления руды и кирка. Данный способ предполагает лазанье по горам, рытье грунта, траншей и шахт. Такая добыча велась преимущественно на территории России.
  • Промышленный метод. Благодаря развитию науки и открытию определенных химических соединений, скорость добычи значительно увеличилась, а также стала применяться мелкая и крупная техника. Этот процесс ведется автоматически и практически не требует человеческого внедрения.

Промышленная добыча в свою очередь делится на:

  1. Альмагальмирование. Смысл данного метода заключается во взаимодействии ртути и золота. Ртуть имеет свойство притягивать и обволакивать драгоценный металл. Для обнаружения металла, руду засыпают в бочки, на дне которых находится ртуть. Золото притягивалось к ртути, а остальная, опустошенная руда отбрасывается. Этот метод пользовался спросом и был эффективен в середине 20 века. Он считался достаточно дешевым и простым. Однако, ртуть все же является токсичным элементом и поэтому от метода отказались. Прилипшие частицы драгоценного металла не всегда до конца удавалось отделить от ртути, что не является практичным и приводит к потере части добытого металла.
  2. Выщелачивание. Этот метод производится при помощи цианида натрия. При помощи этого элемента частицы драгоценного металла переходят в состояние водорастворимых цианистых соединений. После этого при помощи химических реагентов их снова возвращают в твердое состояние.
  3. Флотация. Существуют такие разновидности золотоносных частиц, которые не поддаются воздействию воды и не промокают. Они плавают на поверхности, как воздушные пузырьки. Такую разновидность породы дробят, затем заливают жидкостью или маслом сосны и перемешивают. Необходимые золотые частицы всплывают подобно воздушным пузырькам, их очищают и получают конечный результат. Если речь идет о промышленных масштабах, то сосновое масло заменяется воздухом.

Современные технологии обработки

Существует два способа обработки драгоценных металлов.

Литье

Этот способ является относительно простым. И действительно, все что потребуется, это залить расплавленный металл в заранее заготовленную форму, которая изготовлена из меди, свинца, дерева или воска. После полного остывания, изделие извлекается из формы, полируется.

Для размягчения металла используются специальные плавильные печи. Они бывают индукционные и муфельные.

Индукционная печь считается наиболее популярным и функциональным видом плавления. В ней нагрев происходит благодаря воздействию вихревых токов.
Муфельная печь позволяет нагревать определенные материалы до заданной температуры.

Муфельные печи делятся на различные виды в зависимости от типа нагревательного элемента (электрические, газовые), от защитного режима обработки (воздушные, с газовой атмосферой, вакуумные), от типа конструкции (вертикальная загрузка, колпаковые, горизонтальная загрузка, трубчатые).

Чеканка

Этот способ считается более сложным. Здесь металл не плавят, а разогревают до необходимого для дальнейшей работы состояния. Далее, при помощи молотков, на свинцовой подложке размягченное сырье превращают в тонкий пласт. Далее, будущему изделию придают необходимую форму.

Применение и виды изделий

Первое, что приходит на ум, если речь идет о применении драгоценных металлов – ювелирная промышленность. Сегодня мы видим изобилие различных ювелирных украшений и изделий на любой вкус. Это, как украшения, так и предметы быта, например, изделия для сервировки стола, посуда. Каждое ювелирное изделие имеет клеймо, которое соответствует подлинности и определенной пробе. Однако, это лишь малая часть сферы использования драгоценных металлов.

Их использование востребовано в автомобильной сфере.

Без платины, иридия, палладия, золота не обойтись в медицинской сфере. Медицинские иглы яркий тому пример. Также на основе белого металла изготавливаются протезы, различные инструменты, детали, препараты.

Кроме того, при помощи ценных металлов изготавливаются высокопрочные и устойчивые аппараты в электротехнической сфере. Например, антикоррозийные приборы и константные к образованию электрической дуги приборы. Каталитические свойства платины используются при производстве серной и азотной кислоты. Формалин изготавливается при помощи химических свойств аргентума. Без золота трудно представить нефтеперерабатывающую сферу.

Более прочные металлы используются для выплавления деталей, задействованных в более агрессивных условиях. Например, когда речь идет о работе с высокими температурами, агрессивными химическими реакциями, электричеством и прочим.

Также напыления этих металлов используют для покрытия других. Это помогает избавиться от коррозий, наделяет защитными свойствами присущими драгоценным металлам.

Ценообразование

Цену на драгоценные металлы предопределяют множество процессов, среди которых технические, фундаментальные и спекулятивные. Однако, наиболее важным фактором является спрос и предложение. Именно от этого фактора отталкиваются при формировании цен на драгоценности. Спрос формируют покупатели. Они используют металлы в различных промышленностях – медицинской, машиностроительной, радиотехнической, ювелирной. Также наличие изделий из драгоценных металлов зачастую определяет принадлежность человека к определённому статусу. Наиболее популярным среди прочих является золото. Это связано также с тем, что каждое государство имеет свой золотой запас, и его масштаб частично определяет весомость государства на мировой арене.

Согласно данным Центрального Банка Российской Федерации стоимость одного грамма золота составляет – 2686,17 руб., серебро – 31,78 руб./ грамм, платина – 1775, 04 руб./ грамм, палладий – 2179, 99 руб./ грамм.

Следующая за каменным веком ступень в развитии человеческой культуры связана с искусством добывать из руды металл и его обрабатывать и называется, поэтому веком металлов. Он подразделяется на древнейший - бронзовый и позднейший - железный, начавшийся в доисторическую эпоху и продолжающийся в наши дни.

На эту высшую ступень человечество переходило от каменных орудий медленно и постепенно, и началом перехода следует считать уменье лить и ковать раскаленный металл. Где имелась в изобилии самородная медь, как в Америке, там и в неолитическую эпоху каменным молотом иди просто камнем ковали из холодного металла различные изделия; метеорное железо также употреблялось для изготовления наконечников стрел и копий, наравне с камнем.

Переход от камня к бронзе и железу происходил в разных странах в разное время и не везде с одинаковой последовательностью. Находки в некоторых местах, напр., в свайных постройках Швейцарии, в Египте и на холме Гиссарлик, где была древняя Троя, последовательно воспроизводят эволюцию неолитической культуры в железную, но в других местах от каменных изделий прямо переходят к железным. Так, в центральной и южной Африке над пластом каменного века непосредственно лежит пласт железной культуры, перенесенной туда в древнейшую эпоху, вероятно, из Египта. Многие современные народы, жившие в каменном веке, прямо перешли в железный век после соприкосновения с европейцами, уже давно пользующимися железом. С другой стороны, доисторическая культурная эпоха металлов постепенно переходит в эпоху историческую, начало которой современная наука отодвигает все дальше и дальше.

Первым металлом, из которого человек начал изготовлять орудия и оружие, была медь, так как она местами встречается в земле в самородном виде. Это применение меди было более или менее продолжительным, смотря по местности, и было вступлением к бронзовому веку. Так как медь очень мягка, то к ней стали прибавлять олово (около 10%) и получили бронзу, сплав с золотистым блеском и достаточной твердости. Вслед за бронзой, а может быть и раньше, началась обработка золота и серебра, но исключительно для украшений. Изделия из меди и бронзы в Старом Свете появились раньше в странах Передней Азии, где имеются и медь, и олово, затем в Египте и позже в Европе. В страны, где не было этих металлов, медные и бронзовые изделия проникали посредством торговли.

Топоры и секиры из меди

Все главные элементы человеческой культуры имеют взаимную органическую связь, и изменения одного из них влекут за собою изменения в материальной обстановке и всем укладе жизни человека. Подтверждением этого могут служить археологические находки в швейцарских свайных постройках.

В переходный период от камня к металлу, кроме каменных изделий, появляются медные инструменты, оружие и украшения; затем появляется бронза, сперва в небольшом количестве, но постепенно занимает господствующее положение. По форме эти медные и даже бронзовые изделия долго не отличаются от каменных, но с течением времени, становятся целесообразнее, разнообразнее и изящнее. Появляются литые или дутые бронзовые топоры (цельты), узкие и широкие долота для плотничьих и столярных работ, пунсоны для выдавливания узоров на металле, ножи со шпеньком для рукоятки, обоюдоострые мечи с ножнами, изящные булавки, браслеты и др. украшения. Благодаря улучшенным, металлическим инструментам явилась возможность отодвигать свайные постройки дальше от берега (на 200 - 300 м) и строить более обширные здания. Сваи построек часто имеют четырехугольную форму, и концы их хорошо обтесаны. Скромные хижины каменного века заменяются прочными и большими домами, служащими приютом не только для человека, но и для домашних животных. Инвентарь этих жилищ, керамические изделия, украшения из золота и янтаря свидетельствуют о стремлении обитателей этих жилищ не только к комфорту, но и к роскоши. Кроме жилых построек, существовали и мастерские, в которых найдены куски бронзы, плавильные тигли, формы и инструменты для отливки и обработки металла. В странах древнего Востока мы найдем еще более крупные и даже грандиозные достижения материальной культуры бронзового века.

В этот период большие успехи сделало земледелие и скотоводство. Мотыжная обработка земли заменяется обработкой плугом, в который впрягаются животные, и, благодаря этому, расширяется площадь возделываемой земли и посевы злаков; в сухих земледельческих областях широко применяется искусственное орошение. В связи с земледелием приняло значительные размеры скотоводство, обеспечивая, таким образом, наибольшую устойчивость сельского хозяйства. Появились новые породы рогатого скота и лошадей, получивших более широкое распространение, крупных собак, изображения которых встречаются на ассирийских памятниках, началось разведение домашней птицы (куры, павлины, гуси, утки). В числе домашних животных в Египте появляется кошка, пользовавшаяся там религиозным почетом, как добрый дух дома; но она долго ограничивалась пределами Египта, не проникая далеко даже вглубь Африки.

В бронзовый век возникает не только речное, но и морское судоходство, развивается торговля, появляются деньги, письменность, искусство и наука, формируются и выступают на историческую сцену народы и государства. Значительная часть истории древнего Востока протекает в пределах бронзового века. В Месопотамии медный век начинается в 6000 года до p. X. у сумиров, положивших начало высокой вавилонской культуре, развитой и дополненной семитами, бронзовый с 4000 г. до 1700 г. до p. X., когда возникло и процветало древне-Вавилонское царство. В Египте медь появляется с 5000 г. вместе с вторжением из Азии семитов, но бронза остается при царях III-XVII династий (1300-1600 г.). О культурных достижениях этого периода можно судить по постройке пирамид (III-V династии) и другим памятникам древнего Египта. К бронзовому веку относится история евреев, начиная с Авраама (2000 г. до p. X.), и финикийских мореходов, изобретателей нашего алфавита. С конца 3-го тысячелетия до 1250 г. до p. X. на острове Крите и берегах Эгейского моря развивается, открытая благодаря исследованиям англичанина Эванса и других археологов, удивительная по своим достижениям в области техники и искусства Критская или Эгейская культура. Под ее влиянием зарождается греческая бронзовая культура (с 2500 г. до p. X.), конец которой совпадает со временем появления поэм Гомера. В Индии и Китае известны археологические находки неолитической, медной и бронзовой эпох, но их хронологию не удалось установить. В Японию бронза попала около 1500 г. до p. X., железо - около 700 г. до p. X. В Америке (в Мексике и Перу) туземцы не были знакомы с железом и употребляли медные и бронзовые орудия, не расставаясь, однако, с каменными. Кроме того, они пользовались для сплавов оловом, свинцом, золотом и серебром (в перуанской бронзе от 5%-10% серебра). Типы и форма американских бронзовых изделий соответствуют европейским. Достижения американской бронзовой культуры были довольно высоки, но все-таки она уступала Старому Свету, так как она не имела домашних животных (за исключением ламы) и ограничивалась мотыжным земледелием.

Железо появилось в Египте и Ассиро-Вавилонии около 1500 г. до p. X., в Европе несколько позже (в конце второго тысячелетия до p. X.).

В Гомеровскую эпоху железо было редкостью и употреблялось только для украшений и только с VI-го века до p. X. в Европе оно окончательно вытесняет бронзу. Причина позднего появления железа не единственно в Европе, но и на более культурном Востоке, заключается в трудности его добывания и обработки. Железо плавится только при температуре 1600° Ц. и с трудом отделяется от руды. Древнейшее железо - мягкое и содержит много шлаков, позже оно становится лучше, а римляне научились превращать его в сталь. Выплавлялось железо в закрытых глиняных печах, где слои руды чередовались со слоями древесного угля, и металл собирался в тиглях на дне печи.

После охлаждения печи железные болванки поступали в дальнейшую обработку.

Начало железного века в Европе называется галльштаттским периодом (1000 -500 г. до p. X.), а последующий период, когда железо окончательно вытеснило бронзу и вошло в полное употребление, называется ла-тенским.

Железный век в Европе, прежде всего, проложил себе дорогу в Италии, где, кроме латинов, с VIII в. начали селиться греческие колонисты, и около 900 г. до p. X. поселился загадочный народ этруски, коренастый, темнокожий, невысокого роста, не походивший ни по наружности, ни по языку, ни на греков, ни на римлян. Полагают, что родина этрусков - Малая Азия и северные острова Эгейского моря. Этрусские древности (живопись, сосуды, изделия из бронзы и железа, развалины укреплений, храмов и т. п.) свидетельствуют о высоком уровне этрусской культуры, оказавшей влияние на римлян.

Этруски и находившиеся у них на службе греки были искусными мастерами по выделке изделий из бронзы и железа. Этруски долго боролись с римлянами, причем железо играло важную роль в этой борьбе: этрусский царь Порсенна, победив римлян, обязал их не обрабатывать железа.

Полную картину высокого уровня культуры в первый период европейского железного века дают археологические находки в Галльштатте, в окрестностях которого с древних времен разрабатывались соляные копи, служившие источником благосостояния обитателей этой местности. Там было исследовано (1846 по 1886 г.) больше тысячи могил, в которых положены были вместе с трупами самые разнообразные вещи. Встречаются изредка каменные изделия, много бронзовых, но железные преобладают. Из железа сделаны мечи и кинжалы (с бронзовой рукояткой), наконечники стрел и копий, топоры, ножи, долота и др. инструменты. Очень изящны украшения и сосуды из бронзы, глиняные сосуды, сделанные от руки, красивой формы, покрытые графитом или раскрашенными орнаментами и рисунками. Все эти находки свидетельствуют о высоком культурном уровне населения, развитой технике, стремлении к роскоши и указывают на отдаленные торговые сношения с севером (янтарь) и югом (вещи в италийском и греческом стиле).

Ла-тенские изделия обозначают полное наступления для западной и средней Европы железного века и его культуры, которая распространялась из Галлии в Германию. Эти изделия в техническом отношении выше галльштаттских и обнаруживают больше стремления к практичности, чем к роскоши. Железные орудия в Ла-тенскую эпоху делаются совершенно необходимыми, и за них платят монетой, чеканка которой представляет подражание греческим и римским монетам. В гончарном деле появляется станок и гончарные печи. В Галлии вырастают укрепленные города, за толстыми стенами которых, в домиках из сырцового кирпича укрывается население.

В Восточной Европе на севере господствует в бронзовом и железном веках отличный от западно-европейского так наз. урало-алтайский стиль, а на юге — скифский (курганы), отражающий греческое влияние.

Мы познакомились с возникновением и развитием первобытной культуры, достижения которой имеют несомненную связь с настоящим и являются исходными пунктами культурного пути современного человечества. Долог и тернист был этот путь, на котором одни народы погибли или отстали, другие далеко ушли вперед. Чем ближе к нашему времени, тем быстрее и дружнее становится эго движение; втягивающее в себя и отставших. История человеческой культуры, поскольку она нам известна, охватывает сравнительно небольшой период времени и открывает человечеству необъятные перспективы. И древнейшие, и новейшие культурные народы, если рассматривать их историю с точки зрения древности человеческого рода вообще, представляют собою лишь крохотные побеги на древнем стволе человечества, корни которого теряются в глубине отдаленнейших периодов жизни земли. А эти века в жизни земли являются опять-таки лишь короткими моментами по сравнению с теми миллионами лет, в которые продолжалось развитие мироздания.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Олимпиодр (VI в.), греческий философ и астролог, профессор Александрийской школы. Он соотнес 7 планет древности с 7 металлами и ввел обозначение этих металлов символами планет (Золото-Солнце, Серебро-Луна, Ртуть-Меркурий, Медь-Венера, Железо-Марс, Олово-Юпитер, Свинец-Сатурн). Олимпиодр (VI в.), греческий философ и астролог, профессор Александрийской школы. Он соотнес 7 планет древности с 7 металлами и ввел обозначение этих металлов символами планет (Золото-Солнце, Серебро-Луна, Ртуть-Меркурий, Медь-Венера, Железо-Марс, Олово-Юпитер, Свинец-Сатурн). Термин "металл" произошёл от греческого слова metallon (от metalleuo - выкапываю, добываю из земли). По алхимическим представлениям, металлы зарождались в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствовались, превращаясь в серебро и золото. Алхимики полагали, что металлы - вещества сложные, состоящие из "начала металличности" (ртути) и "начала горючести" (серы).

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Слайд 10

Описание слайда:

Описание слайда:

Свинец (лат. Plumbum) Свинец – это синевато-серый мягкий и тяжелый металл, это цветной металл. Содержание свинца в земной коре 1,6×10-3% по массе. Самородный свинец встречается крайне редко. Чаще всего свинец встречается в виде в виде сульфида PbS. Этот хрупкий блестящий минерал серого цвета называют галенитом, или свинцовым блеском. Плавится свинец при температуре 327,4°С, а кипит при 1725°С. Плотность его 11,34 г/см. Свинец – пластичный, мягкий металл: он режется ножом, царапается ногтем. На воздухе он быстро покрывается тонким слоем оксида PbO. Разбавленные соляная и серная кислоты на свинец почти не действуют, но он растворяется в концентрированных серной и азотной кислотах. С середины XIV в. из свинца отливали пули для огнестрельного оружия, в XV в. Гуттенберг в Германии приготовил знаменитый типографский сплав сурьмы, свинца и олова, или гарт, и положил начало книгопечатанию. Легкоплавкий, удобный в переработке, свинец широко применяется в наши дни. Свинец хорошо поглощает рентгеновское и радиоактивное излучение

Слайд 14

Описание слайда:

Список литературы Крицман В.А., Станцо В.В. Энциклопедический словарь юного химика 1982г. Дибров И.А. Неорганическая химия. СПб.: Изд. «Лань», 2001. Краткий справочник физико-химических величин / Под ред.К.П.Мищенко А.А. Равделя. Л.: Химия, 1999 *. Нейгебауэр О. Точные науки в древности. - М.: "Наука", 1968.

(лат.Ferrum).

Железо можно назвать главным металлом нашего времени. Это химический элемент очень хорошо изучен. Тем не менее ученые не знают, когда и кем открыто железо: слишком давно это было. Использовать железные изделия человек начал еще в начале I тысячелетия до н.э. На смену бронзовому веку пришел железный. Металлургия железа на территории Европы и Азии начала развиваться еще в IX-VII в.в. до н.э. Первое железо, попавшее в руки человека, вероятно, неземного происхождения. Ежегодно на Землю падает больше тысячи метеоритов, часть их железные, состоящие в основном из никелистого железа. Самый большой из обнаруженных железных метеоритов весит около 60 т. Он найден в 1920 г. В юго-западной части Африки. У «небесного» железа есть одна важная технологическая особенность: в нагретом виде этот металл не поддается ковке, ковать можно лишь холодное метеоритное железо. Оружие из «небесного» металла долгие века оставалось чрезвычайно редким и драгоценным. Железо- металл войны, но это и важнейший металл мирной техники. Из железа, как полагают ученые, состоит ядро Земли, и вообще на Земле это один из самых распространенных элементов. На Луне железо найдено в больших количествах в двухвалентном состоянии и самородное. В таком же виде железо существовало и на Земле, пока на ней восстановительная атмосфера не сменилась на окислительную, кислородную. Еще в глубокой древности было открыто замечательное явление – магнитные свойства железа, которые объясняются особенностями строения электронной оболочки атома железа. В древности железо ценилось очень высоко. Основная масса железа находится в месторождениях, которые можно разрабатывать промышленным способом. По запасам в земной коре железо занимает 4 место среди всех элементов, после кислорода, кремния и алюминия. Намного больше железа в ядре планеты. Но это железо недоступно и вряд ли станет доступным в обозримом будущем. Больше всего железа – 72,4% - в магнетите. Крупнейшие в СССР железорудные месторождения – Курская магнитная аномалия, Криворожское железорудное месторождение, на Урале (горы Магнитная, Высокая, Благодать), в Казахстане – Соколовское и Сарбайское месторождения. Железо – блестящий серебристо-белый металл, его легко обрабатывать: резать, ковать, прокатывать, штамповать.

Вероятно, первый металл, с которым познакомился человек еще во времена нового каменного века (около 6 тыс. лет назад на Древнем Востоке и около 4 тыс. лет назад в Европе), была медь. Она встречается в природе В самородном состоянии в виде пластинок, губчатых и сплошных масс, а также кристаллов. Самый крупный из найденных самородков весил 420 т. Медные самородки гораздо больше распространены в природе, чем самородки других металлов. Поэтому естественно, что в поисках подходящих пород для изготовления орудий человек в первую очередь встретился именно с медными самородками. Эта встреча знаменовала собой начало медного века.

Надо полагать, человек довольно быстро оценил преимущества нового материала. Возраст предметов из самородной меди достигает 6 тыс. лет. Особенно крупные самородки находили в Северной Америке на берегах Гудзонова залива и Верхнего озера. Первые орудия человека были сделаны из камня, поэтому первые медные изделия появились на свет в результате обработки медных самородков каменными топорами. Длительное время затем каменные и медные орудия применялись совместно. В этот период человек на примере меди постигал основы металлургии и металловедения.

Обработка медных самородков с помощью каменного топора имела, конечно, ограниченные возможности. Холодной ковкой самородков пластинчатой формы можно было изготовить небольшие по величине предметы - булавки, крючки, наконечники стрел и т. п. Получить же листовую медь холодной ковкой невозможно - материал растрескивается. Также невозможно изготовить холодной ковкой предметы сложного профиля: сосуды, сковороды и др. К тому времени человек уже уверенно управлял огнем. Лагерный костер с температурой 700-800 °С сменили печи, где достигалась более высокая температура - 1000-1200 °С. На территории Египта, например, были найдены керамические сосуды, датированные 5 тыс. лет до н. э., обжиг которых был проведен при 1100-1200 °С. Медь плавится при температуре 1084 °С, поэтому, естественно, что следующим шагом в металлургической практике человека явилось, получение расплавленной меди. Это существенно расширило ассортимент изготовляемых из меди изделий.

Однако самородная медь встречается редко, и ее было явно недостаточно, чтобы удовлетворить стремительно растущие потребности в этом металле. На следующем этапе человек начал получать медь восстановительной плавкой ее руды. Медные руды - природные минералы, агрегаты, содержащие медь в таких количествах и соединениях, при которых извлечение металла экономически выгодно. В настоящее время известно свыше 170 медьсодержащих минералов, из них только 10-15 имеют практическое значение. К важнейшим минералам относятся: халькопирит CuFeS 2 (30 % меди), халькозин - "медный блеск" Cu 2 S (79,8% меди), ковелин CuS (64,4% меди), малахит CuCО 3 ·Cu(OH) 2 (57,4% меди), азурит 2CuCО 3 ·Cu(OH) 2 (55,5 % меди), куприт Cu 2 О (81,8% меди). Руды современных промышленных месторождений почти никогда не бывают сложены только одними минералами меди. Обычно медьсодержащие минералы срастаются с нерудными минералами (кварц, барит и др.) и некоторыми рудными минералами железа и цветных металлов (пирит, пирротин и др.).

Месторождения медных руд распространены гораздо шире, чем месторождения крупных медных самородков, и были известны человеку с глубокой древности. Сейчас трудно выяснить, как именно была открыта выплавка меди из руд и произошло ли это существенно позже, чем человек встретился с самородной медью. Имеются данные, что уже за 7 тыс. лет до н. э. на Ближнем Востоке употреблялась металлургическая медь. Добыча самородной меди и выплавка меди из руд - операции, существенно отличающиеся в техническом и технологическом отношениях, по-видимому, в разных районах мира осваивались человеком одновременно.

Первоначально использовались окисленные руды. Они не требуют предварительного обжига в отличие от сульфидных руд, для которых такая обработка необходима, чтобы удалить химически связанную серу. Восстановительная плавка малахитовых руд проводилась в примитивных печах. Они представляли собой глиняные тигли, наполненные рудой и углем, которые помещались в неглубокую ямку. Поверх насыпали слой древесного угля.

Уголь, сгорая, образует оксид углерода (II), который взаимодействует с малахитом, восстанавливая химически связанную медь до металла:

CO + CuCО 3 = 2CО 2 +Cu

Крытое устройство печей обеспечивало изоляцию реакционной среды от избытка кислорода воздуха, который окисляет оксид углерода (II) в оксид углерода (IV) и тем самым мешает восстановлению меди. Неизвестно, как человек пришел к мысли, что медь надо выплавлять именно так, но, очевидно, у него для экспериментов было много времени и упорства. Имеются свидетельства очень раннего знакомства человека с металлургической выплавкой меди. В Египте, например, обработка медных руд Синайского полуострова велась уже в IV тысячелетии до н. э. С глубокой древности были известны медные руды на острове Кипр. Предполагается, что слово "купрум", научное название меди, произошло от наименования острова Кипр, где находились медные рудники древних римлян.

В Европе древние медные копи найдены в Австрии на Миттерберге. Там же обнаружены каменные орудия, которыми эти копи разрабатывались. Предки древних славян, жившие в бассейне Дона и Преднепровье, использовали небогатые месторождения меди, находившиеся в районе нынешнего Донбасса и затопленных Днепровских порогов. Они применяли медь для изготовления оружия, предметов домашнего обихода, украшений.

По мнению некоторых ученых, русское слово "медь" произошло от слова "смида", которое у некоторых древних племен, живших на европейской части современной территории СССР, обозначало вообще металл. На рубеже XVII-XVIII вв. начало промышленной переработки меди в России было положено Никитой Демидовым. В музее Тагила имеется огромный раскладной медный стол, на котором сделана надпись: "Сия первая в России медь отыскана в Сибире... Никитою Демидовиче.м Демидовым по грамотам великого Государя Императора Петра Первого в 1702 и 1706 и 1709 годах, а из сей первовыплавленной меди сделан оный стол в 1715 году".

После того как человек научился получать и обрабатывать медь, несколько тысячелетий наряду с камнем она являлась основньш твердым материалом древности (рис. 12). Уже первобытные металлурги пытались повысить твердость этого в чистом виде довольно мягкого металла. Первоначально, по-видимому, случайное образование сплава меди с оловом, которое могло произойти при обработке некоторых руд, содержащих вместе олово и медь, определило направление поисков улучшения механических свойств меди. Удачное соединение меди с оловом воспроизводилось человеком уже сознательно.

Естественно, что испытывались композиции меди и с другими металлами (цинк, мышьяк, никель и др.). Сплав меди с цинком получали, например, в Древнем Иране. Медно-мышьяково-никелевая четырехгранная приколка, найденная в Азербайджане, имеет возраст более 5 тыс. лет. Предметы, изготовленные из медно-никелевых сплавов, найдены в Германии, Испании, Португалии и относятся примерно к тому же периоду.

Особое место в практической деятельности человека занимает бронза - сплав меди с оловом. Бронза превосходит медь по твердости, хорошо поддается обработке, очень устойчива к окислению. Период истории приблизительно с начала III тысячелетия до н. э. до начала I тысячелетия до н. э. называют бронзовым веком. В это время появились новые, более разнообразные орудия и предметы вооружения, сделанные из бронзы (топоры, ножи, серпы), появилась бронзовая утварь - кубки, чаши, котлы и т. п. Изделия из бронзы отливались у египтян, индусов, ассирийцев. Широко использовалась бронза для изготовления украшений, статуй и других предметов художественного творчества.

Статуя высотой 32 м, созданная в 290 г. до н. э. в честь бога солнца Гелиоса - Колосс Родосский, была отлита из бронзы и поставлена на самом восточном острове Эгейского моря - Родосе, у входа в порт. В Японии в 749 г. была отлита и помещена в храм Тодайдзи четырехсоттонная статуя Будды. О большом распространении бронзы в искусстве древнего мира можно судить по дошедшим до нас статуям (Дискобол, Спящий сатир, Марк Аврелий и др.). Само слово "бронза" имеет относительно позднее происхождение и связано с названием итальянского торгового городка на берегу Адриатического моря Бридзини, где продавались разнообразные изделия из бронзы.

По мере того как человечество накапливало технический и технологический опыт, наряду с бронзой появились и другие сплавы меди, обладающие различными ценными свойствами. В настоящее время известно большое количество сплавов, которые медь образует с другими элементами: Zn, Sn, Al, Ni, Pb, Mn, Be, Fe, Mg, Hg, Ag, Au, Si. Широкое распространение медных сплавов объясняется тем, что разные группы их имеют разные достоинства. К этим достоинствам можно отнести антифрикционность, коррозийную стойкость, пластичность, хорошие литейные свойства, красивый внешний вид и т. п. Сплавы меди с цинком называются латунями и по составу делятся на красные латуни (меньше 20% Zn), обладающие хорошей текучестью; желтые латуни (20-50% Zn); хрупкие белые латуни (50-80% Zn) и специальные латуни, которые наряду с медью и цинком содержат Ni, Mn, Fe, Sn и Al.

Бронзой раньше называли только сплав меди с оловом. Из-за дефицитности олова сплавы с аналогичными свойствами стали получать, добавляя к меди другие металлы. Теперь, помимо оловянных, широко используются алюминиевые, свинцовые, кремниевые, кадмиевые и другие бронзы. Все эти сплавы содержат небольшие количества легирующих компонентов, которые улучшают те или иные их качества. Из-за большого разнообразия, свойств применение медных сплавов издавна было весьма широким. Из бронзы состава 90% меди и 10% олова отливались артиллерийские орудия. Сплав, состоящий из 76-82 % меди, 16-22 % олова и до 4 % свинца, использовался для отливки колоколов. Из такого колокольного металла сделаны один "часовой" и 10 "четвертных" колоколов Спасской башни Московского Кремля. Эти колокола отлиты в XVII-XVIII вв. и весят: "часовой" - 2160 кг, "четвертные" - от 300 до 350 кг.

Для изготовления художественных изделий пользуются сплавом, содержащим 70-80 % меди, до 10 % цинка, 5-8 % олова и 3 % свинца. Это так называемая художественная бронза. В 1863 г. на одном из островов (Мас-а-Тьерре) в 600 км от побережья Чили была установлена отлитая из художественной бронзы мемориальная доска шотландскому моряку Александру Селкирку - прототипу знаменитого Робинзона Крузо. В Московском Кремле в Успенском соборе находится выполненный в 1625 г. из художественной бронзы шатер ажурного литья - образец высочайшего мастерства русских умельцев. История литья статуй из бронзы в России начинается с эпохи Петра I. В 1714 г, была отлита первая статуя Самсона для фонтана в Петергофе. Труднейшее литье в один прием знаменитого "Медного Всадника" - монумента Петру I, провели по проекту скульптора Э. Фальконе в 1775 г. При Академии художеств в Петербурге в 1764 г. был основан "Литейный дом", в котором выполнялись из бронзы многочисленные предметы для украшения дворцов, а также скульптурные работы.

Производство меди. Медьсодержащие минералы в чистом виде в промышленных масштабах не встречаются. В кусках руд тесно переплетены между собой минералы, содержащие разные элементы. Они срастаются, образуют небольшие вкрапления. Обычно медные руды содержат от 0,5 до 2 % меди. Только в Конго встречаются месторождения, содержание меди в которых доходит до 20 %. Малая концентрация меди в рудах затрудняет ее добычу, и производство меди становится сложным многоступенчатым процессом.

Из сульфидных руд медь добывается, главным образом, пирометаллургическим путем, а из окисленных - гидрометаллургическим. Пирометаллургическим способом в настоящее время получают 75 % всей добываемой меди. Этот способ основан на частичном окислении сернистых руд до оксидов меди, которые восстанавливаются избытком сульфида до металлической меди:

2Сu 2 О + Cu 2 S = 6Cu + SО 2

Малая концентрация меди в рудах, естественно, затрудняет ее извлечение. Поэтому перед тем, как добытую руду пускают на переплавку, ее обогащают - искусственно увеличивают процентное содержание меди. Для того чтобы провести обогащение, руду измельчают до таких размеров, которые позволяют выделить зерна с процентом содержания меди, большим, чем в исходной руде. Затем такие "богатые" зерна отделяют от остальных, используя то обстоятельство, что зерна различного состава обладают различными свойствами. К числу таких свойств относятся: цвет, блеск, масса, электрическая и магнитная восприимчивость, смачиваемость.

Самым распространенным сейчас способом обогащения является флотация (рис. 13). В металлургии флотация применяется, в основном, для отделения сульфидных минералов от пустой породы, а также для разделения частиц руд различных металлов. Метод основан на различии адсорбционных

свойств поверхности частиц сернистых металлов и пустой породы силикатного типа. Флотация медных руд осуществляется следующим образом. К суспензии тонкоизмельченной руды (0,05-0,5 мм) в воде, называемой пульпой, добавляют какое-нибудь полярное органическое вещество с длинной углеводородной цепью - собиратель. Собиратель обладает способностью полярными концами избирательно сорбироваться на поверхности частиц медной руды. При этом его углеводородный конец остается в водной фазе. Таким образом, в результате сорбции поверхность частицы оказывается покрытой и углеводородной "щетко", уменьшает ее смачиваемость. Частицы пустой породы, обладающие полярной поверхностью, смачиваются хорошо.

Далее пульпу при интенсивном перемешивании продувают воздухом, который образует пузырьки. Известно, что неполярные молекулы, помещенные в воду, в первую очередь стремятся расположиться на границе раздела вода - воздух. Точно так же ведут себя неполярные концы собирателя, покрывающие частицу руды. Для них самой доступной границей раздела вода - воздух является поверхность пузырьков. В результате частицы руды прилипают к пузырькам и вместе с ними всплывают на поверхность в виде пены. Пустая же порода - "хвосты" - остается в пульпе. Пену снимают, обезвоживают и получают концентрат, а хвосты сбрасывают в отвал. Полученный концентрат содержит уже до 55 % меди. Это верхний предел. В большинстве случаев после флотации содержание меди в концентрате находится в пределах 11-35 %. Наряду с медью там имеются сера, железо, цинк, оксиды кремния, алюминия, кальция, а также в небольших количествах благородные металлы - золото, серебро, платина. Сульфидные руды часто содержат много пирита, поэтому и в концентрате существенная часть железа и серы приходится на его долю.

Чтобы получить чистую медь, от примесей необходимо избавиться. Это удается сделать не сразу, а в несколько этапов. Первым из них является обжиг концентрата. Концентрат подвергают обжигу для того, чтобы снизить в нем содержание серы. Кроме того, в результате обжига получается оксид серы (IV) в таких концентрациях, что его можно в дальнейшем использовать для производства серной кислоты. Комплексное использование сырья приводит к уменьшению загрязнения атмосферы отходами производства.

Обжиг ведут при температуре 600-700 °С в многоподовых печах. Печь загружают концентратом в смеси с флюсами (кварц, известняк), необходимыми для последующего этапа - выплавки штейна. Во время обжига наряду с окислением серы происходит целый ряд процессов: разложение сложных сульфидов, прямое окисление минерала, образование ферритов примесных металлов и др. Как уже говорилось, в концентрате, подвергающемуся обжигу, содержится значительное количество пирита (40-50 %). Его горение при обжиге, в зависимости от доступа воздуха, описывается уравнениями:

3FeS 2 + 8О 2 = Fe 3 О 4 + 6SО 2 + 2349 кДж

4FeS 2 +11О 2 = 2Fe 2 О 3 + 8SО 2 + 3282 кДж

Эти реакции сопровождаются выделением значительного количества тепла. В результате обжиг проходит самопроизвольно, без затрат топлива. Достаточно только в начале процесса временными топками нагреть шихту до температуры воспламенения сульфидов. В процессе обжига из руды удаляется не вся сера. После обжига в шихте остаются сульфиды меди, железа, устойчивые оксиды - Cu 2 О, Fe 2 О 3 , Fe 3 О4, ZnO, PbO, a также флюсы.

Следующий этап производства меди - выплавка из обожженного концентрата штейна и отделение его от шлака.

Штейн - это сплавы Cu 2 S с FeS с примесями некоторых сульфидов (Zn, Pb, Ni) и оксидов (Fe, Si, Al, Ca)

Содержание меди в штейне колеблется от 10 до 79,9% (чистый Cu 2 S). Шлаки - сплавы силикатов различных металлов. В металлургии меди это, в основном, силикаты железа. Плавка на штейн производится в отражательных печах (рис. 14), куда помещается прошедшая обжиг шихта. Топливом служит угольная пыль, мазут или природный газ. Температура зависит от расстояния, от места ввода топлива и лежит в пределах 1200-1600 °С.

Основным химическим процессом, который происходит на этом этапе, является переход железа в шлак:

FeS + 3F 3 O 4 + 5SiO 2 = 5Fe 2 SiO 4 + SO 2

Часть сульфида железа расходуется на обменную реакцию с оксидом меди:

Cu 2 O + FeS=Cu 2 S + FeO

FeO в присутствии кварца также связывается в силикат. Жидкие сплавы сульфидов и силикатов взаимно нерастворимы и различаются по плотности. Это обстоятельство используется для их разделения. Шлак располагается в верхнем слое, нижний - сплав сульфидов Cu 2 S·FeS - штейн. Их разделяют, выпуская по мере накопления через расположенные на разных уровнях специальные выпускные отверстия.

Само слово штейн происходит от немецкого слова - камень. Это связано с тем, что застывший сплав сульфидов меди и железа внешне очень похож на камень. Дальнейшая переработка штейна производится в продуваемом воздухом конверторе и целью своей имеет уже получение черновой меди. В конвертор заливают жидкий штейн (температура 1200 °С), туда же загружают измельченный (6-20 мм) кварц. В продувке воздуха через штейн можно выделить два этапа, отличающиеся химизмом происходящих в них процессов. На первом окисляется сульфид железа и образуется шлак:

2FeS+3О 2 + SiО 2 = Fe 2 SiО 4 +2SО 2 +966кДж

Эта реакция является основным источником тепла для конверторных процессов.

Оксид меди (I), который также получается на этом этапе:

Cu 2 S + О 2 =Cu 2 О + SО 2

сразу же переводится обратно в сульфид по реакции:

Cu 2 О + FeS = Cu 2 S + FeO

Далее FeO, связываясь с кварцем, переходит в шлак. Накопившийся шлак сливают через горловину, наклоняя конвертор. После слива шлака в конвертор загружают новую порцию штейна и процедуру продувки повторяют до тех пор, пока в конверторе не накопится достаточного количества богатого медью расплава. Таким образом на этом этапе продувки происходит отделение железа от меди: железо удаляется со шлаком, медь остается в конверторе в виде расплава.

На втором этапе из расплава сульфида меди получают металлическую медь. После окисления железа и слива шлака окислению в конверторе подвергается Cu2S:

2Cu 2 S + 3О 2 = 2Cu 2 О + 2SО 2

Так как в отличие от первого этапа в реакционной среде отсутствует сульфид железа, оксид меди реагирует уже с избытком сульфида меди. В результате получается черновая медь:

Cu 2 S + 2Cu 2 О = 6Cu + SО 2

Суммарно процесс, происходящий в конверторе на втором этапе продувки, можно описать следующей реакцией:

Cu 2 S + О 2 = 2Cu + SО 2 + 215 кДж

Черновая медь, слитки которой называют штыками (от немецкого Stück - штука), содержит 1 % примесей (Fe, S, О 2 , As, Ni, Zn и др.) и, кроме того, включает все примеси благородных металлов, которые Содержались в исходной руде и флюсах. Многие примеси ухудшают механические свойства металла, снижают его электрическую проводимость, делают менее пластичным. Для того чтобы избавиться от примесей, а также извлечь представляющие ценность благородные металлы, черновую медь подвергают очистке - рафинированию.

Рафинирование осуществляют двумя способами: огневым (вдувание воздуха при температуре 1150°С) и электролитическим. Первым способом удается избавиться от примесей путем перевода их в нерастворимые в меди оксиды:

4Cu + О 2 = 2Cu 2 О

Me + Cu 2 О = MeO + 2Cu

Оксиды примесей всплывают на поверхность и шлакуются кварцевым флюсом. Образующийся оксид меди (I) восстанавливается продуктами сухой перегонки дерева. Для этого в печь, где проводится рафинирование, после удаления шлаков вводят сырое дерево (жерди, бревна). Выделяющиеся пары воды и углеводороды, перемешивая медь, способствуют удалению из нее газов и переводят в металлическую медь:

4Сu 2 О + СН 4 = СО 2 + 2Н 2 О + 8Сu

Однако огневой способ не позволяет извлечь из меди благородные металлы. Это удается сделать, подвергая медь электролитическому рафинированию. Смысл его заключается в анодном растворении очищаемой меди и высаживании чистой меди на катоде. Для этого из меди, прошедшей предварительную очистку огневым способом, отливают аноды. Они имеют особую форму, удобную для подвешивания (рис. 15). Их масса 250-320 кг. В качестве катодов используют листы чистой меди. Электроды помещают в электролитической ванне, представляющей собой обложенные свинцовыми пластинами бетонные чаны, наполненные соответствующим раствором и серной кислотой. Ванны имеют несколько метров в длину (от 3 до б м) и содержат до сотни электродов. Из соображений экономии ванны соединяют между собой в блоки (рис. 16). При пропускании через такую систему тока на катодах выделяется чистая медь:


а аноды растворяются:


При этом примеси, содержащиеся в медном аноде, в зависимости от их свойств либо переходят в электролит (Zn, Fe, Sn, Ni), либо выпадают в осадок (Ag, Au, Pt), откуда их потом извлекают. Процесс растворения анодов продолжается около 20 суток. Катоды меняют через 6-8 суток. Их извлекают, сушат, переплавляют и разливают медь в слитки. Чистота получаемой электролитическим способом меди достигает 99,95-99,96 %.

Как мы видим, процесс добычи меди из руд состоит из нескольких этапов. Цель каждого из них - отделение меди от сопутствующих примесей. Иногда в зависимости от качества руды, технических возможностей, экономических соображений из производства исключают флотацию или обжиг концентрата. Несколько отличаются на разных заводах условия производства. В самом общем виде схема выплавки меди пирометаллургическим способом изображена на рис. 17. Химические процессы этого способа можно описать суммарной реакцией:

2CuFeS 2 + 5О 2 + SiО 2 = 2Cu + Fe 2 SiО 4 + 4SО 2

Характерной особенностью пирометаллургии является использование высоких температур.

Гидрометаллургический способ, которым сейчас добывают около 25 % всей меди, не связан с использованием высоких температур. Этот способ применяют для извлечения меди главным образом из бедных окисленных руд, но он также может быть использован и для переработки сульфидных и смешанных руд. В ходе гидрометаллургической переработки меди ее труднорастворимые соединения переводятся в растворимые действием различных реагентов. Такими реагентами могут быть: H 2 SО 4 , NH 4 OH, NaCN, Fe 2 (SО 4) 3 . Затем из раствора медь извлекают тем или иным способом. Например, обработка руды, содержащей медь в виде оксида СиО, разбавленной серной кислотой переводит медь в раствор в виде сульфата:

CuO + H 2 SО 4 = CuSО 4 + H 2 О

Извлечь медь из полученного раствора можно электролизом или вытеснением с помощью железа:

CuSО 4 + Fe = Cu + FeSО 4

Преимуществом гидрометаллургического метода является то, что получать металлы можно, не извлекая руду на поверхность. В настоящее время этот метод является весьма перспективным.

Естественно, что за многие тысячелетия, которые насчитывает металлургия меди и медных сплавов, менялись задачи, стоявшие перед металлургами, менялись условия труда, совершенствовалась технология, менялась область применения продуктов производства.